CCOX

C Compiler for the
PICmicro Devices

Version 3.8

User's Manual

&

B Knudsen Data
Trondheim - Norway

CC5X C Compiler B Knudsen Data

This manual and the CC5X compiler is protected by Norwegian copyright laws and thus by
corresponding copyright laws agreed to internationally by mutual consent. The manual and the compiler
may not be copied, partially or as a whole without written consent from the author. The PDF-edition of
the manual can be printed to paper for private or local use, but not for distribution. Modification of the
manual or the compiler is strongly prohibited. All rights reserved.

LICENSE AGREEMENT:
By using the CC5X compiler, you agree to be bound by this agreement.

Only one person may use a licensed edition of the CC5X compiler at the same time for each user license.
If more than one person wants to use the compiler for each user license, then this has to be done by some
manual handshaking procedure (not electronic automated), for example by exchanging a printed copy of
the CC5X User's Manual as a permission key. A site license allows an unlimited number of users within

the same administration unit.

You may make backup copies of the software, and copy it to multiple computers. You may not distribute
copies of the compiler to others. B Knudsen Data assumes no responsibility for errors or defects in the
documentation or in the compiler. This also applies to problems caused by such errors.

Copyright © B Knudsen Data, Trondheim, Norway, 1992 - 2021

This manual covers CC5X version 3.8 and related topics. New versions may contain changes without
prior notice.

Microchip and PICmicro are trademarks of Microchip Technology Inc., Chandler, AZ, U.S.A.

COMPILER BUG REPORTS:

The compiler has been carefully tested and debugged. It is, however, not possible to guarantee a 100 %
error free product.

If the compiler generates application code bugs, it is almost always possible to rewrite the program
slightly in order to avoid the bug. #pragma optimize can be used to avoid optimization bugs. Other
#pragma statements are also useful.

Please report cases of bad generated code and other serious program errors.

1) Investigate and describe the problem. If possible, please provide a complete C example program that
demonstrates the problem. A fragment from the generated assembly file is sometimes enough.

2) This service is intended for difficult compiler problems (not application problems).

3) Language: English

4) State the compiler version.

5) Send your report to support@bknd.com.

Document version: M

mailto:support@bknd.com

CC5X C Compiler B Knudsen Data

CONTENTS
1 INTRODUGCTION ...ttt ettt ettt ettt et te e sb e e ete s aee s be e sbeeebeebeeabeetbesbeesbeesbeesbesseesnsesnsesneeareeans 8
1.1 SUPPORTED DEVICESiiutiitteiteeiteettesttesteesteestesssessesssesssessseassessesssessssstssstesssesssesnsesssessssssssssesssesseessenss 9
1.2 INSTALLATION AND SYSTEM REQUIREMENTS ...cciiiiiuttiiiieeiisiittiii e e s s s s sibbasesesssssabbsssssssssssbbasasesssssnnns 9
SUPPOIt fOr 10N FIlE NAMES ... bbb sae bbb 9
L0 LT 101 (=] =T YRR PRRTRPI 9
1.3 IMIPLAB SUPPORTciiiittiie ettt ettt ettt e e ettt e e e eat e e e st e e e e bt e e e e eabaeeessbaeeeabbeeeeantaeaesabaeeesbbeeesanteeeesnnees 10
1.4 THE SETCC UTILITY ittt ettt ettt e et e e et e e e e eab e e e e saba e e e e tbe e e e aataeaesabaeeesatbeeeeanteeeesanees 10
1.5 SUMMARY OF DELIVERED FILEScciiittiieiitieieeitie e e ettt e e e et e e e ettt e e e etee e e s etteeeasataeeeentaeaesesbeeesanteeessnnenas 10
1.6 SHORT PROGRAM EXAMPLEcuciitiitiiiteeiteeiteeiteatestteeteesbeesteesaessaesteesteeabeeseenbesssestsesteesteesbesssesnnesnns 12
1.7 DEFINING THE PICMICRO DEVICEciiiiitiiite ettt ette et ste e ete ettt sbe e steesbeenbesnbesbaesbaesbeesbesnesnnesns 13
1.8 WWHAT TO DO NEXT c.ttiuviiutiitreiteeiteesteetesssestsestesstesssesssssssssssesssessssassessesssesssesssessesssesssessesnsesnssssesssesnns 14
2 VARIABLES. ... oottt sttt ettt be e be e e b e et e e ab e e bt e e b e e be e be e beerbe e teeateeabeeabeatee e 15
2.1 INFORMATION ON RAM ALLOCATIONu.iittiiteeiteetesrreieeiteesseesseasesssesssesseesseessesssessssssessesssssssesssenns 15
2.2 DEFINING VARIABLESvviitteiteeiteeteeteatteeteeiteesteeitesssesssessesssesassassesssesssesssestessbesssessesssessssssssasesssesns 16
INEEGET VAITADIES.ottt bttt e et et bt e e e b sbesbesreeneas 16
FLOBLING POINT ...ttt bt bbbt e s e e e e b e s b bt b e e at e st e nb e besbeeeeanes 17
IEEET754 iNteroperabilityoooiiiiii e bbb 17
FIXEA POINE VAFTADIES ...ttt b et b ettt se bbb ens 18
Assigning variables t0 RAM @0UIESSES.cuiie ittt st be b sbe e ene s 20
U oo Lo (=Yoo TCI 10T [T S 21
LOCAI VATTADIES ...ttt s be et st e bt e be e e be et e eabestbesteesbeesbeesbeennas 22
TEMPOTArY VATTADIESvecvice e ettt e re s tesreenaeseeneesteseenrenreanens 23
Arrays, SEIUCLUIES N0 UNIONS......c.ueiviieiieeeeeeeieseste e sesreeeestesaestestesseesaesesteseesresseaseeseenseseeseessessensens 23
Large arrays on the ENhanced 14 DIt COMEiviiviiiiiriiie s 24
T T=] (o SRS PRSPPI 24
7811 L= STV U PR SOUPOUPPRTRTRRON 24
2.3 USING RAM BANKS......tiiiiiiie ettt et e e s ettt e e e ettt e e st e e e s e bt e e e e eabeee e sabeeeeaabaeeessteeesssbeeaeanteeeesanees 25
The DaNK tyPe MOGITIET ..ottt b et se e b b eneas 25
RAM DaNK SEIECTION DTSviiicieiitie ettt ettt st ebr e e st be e st e e stre e sbbe e sabeestbeesbeeeabeeens 26
Manual bank bit UPate FEGIONScviiiie ettt be e e e sae s 26
2.8 POINTERS ...ttiiiittete ettt e e ettt e ettt e e e ettt e e e aabeeeesbeeeeaatbeeeaaasaeeesabaeeeaatbeeeasseeeesabeeaeanteeeeensbeeesasbeeesanteeeennens 27
POINTEE MOGEIS......oi ittt te e e be e beeabe e st e ebteebeetaesbeesreeereennas 27
R LI A o | Ao ¢TSS RORRPRURRON 28
The 14 Dit COre: the IRP Dit......oiiiiceccc ettt et br e be e be e beebesrnen 29
2.5 CONST DATA SUPPORTeeitiiiteiiteiiteeteatteeteesteesteeitesseesteesbeeabeeabeesbeassesssesbeesbeesbeesbesseesasesaseaseeareenbeans 30
IS (o] LT T T 0= - W 31
Data 0f SIZ€ 16 DItS OF MOTEvviiviiie ettt ettt e e sbe e be e e saeesbeeereennas 31
(0T T0 [l o T Vo LSRR U TR 31
LOCALING CONSE DALAeveeveieieie ettt bbbttt e bbb bbb e et e se e e e besbeeneanes 32
L= o Tl [F=1 = OSSR 32
EXAMPIES ..ttt bbbt b e bbb bR £ e e e bt bRt b et e ne e e b nbe et enes 32
Const data stored in dediCated fUNCLIONS..........oviiiii ittt sree e eree e 33
3 Y N T A K ettt ettt ettt bt b e e b e et e ha e e he e ebe e ebe e be et e ehe e bt e bt be e beeAbe et b e baeebeebe e beebeenreeateetrearee e 34
3. ST ATEMENTS . vt etietteeteeiteesteeete ettt st e steeebe e beesbeestesteesbeesbeebeeabesaseabseabeeabeenbeesbestsesbeesbeebeenbesnsesreenreenns 34
T STALEIMBNT L.ttt et e st e e s be e b e e te et e bt e e be e be et e eabe et b e ereesteeareeareearas 34
WHITE SEALEMENT ...ttt et e et eebe e ebeebeeabestaesteesbeesbeaabesasesbseabeebeebeesbennnens 34
(OGS = LE=1 1 =10 OO RURRO PP 34
(o (WIS L= 2L TSRS URUORRPRURRO 35
SWITCI STALEMENT. ...ttt ettt e et e e e ebe e e be e e beesabeesabeesabeesabeesabeeabeesateas 35
DIEAK STALEMENL. ... eiiitii ettt et s e et e e st b e e ebe e e st b e e ebee e sbbeebeeesbeeebeeesbeeebeeesbeeenteeens 35

CC5X C Compiler B Knudsen Data

CONEINUE SEALEMENT......eiti ettt et b e et e bbbt b et e bt et e bt e b e ebenreneebeneas 36
FEEUIN SEATEIMIENT. ..ottt bbbt e e r bt s bbb e et e s e nn e b bt ene s 36
QOLO STALEIMIENT. ...ttt ettt b bttt s bt s e s bt e s bt e s be e sbe e b e e me e e ae e e bseebe et e e beenbeanbennneas 36
3.2 ASSIGNMENT AND CONDITIONS ...c.uvtiutiiutesteesteeteatesseesiessseesseasseassesssesssesseasseessesssesssssssssssssseessesnsenns 36
Special SYNTAX BXAMPIESoiiiiiiiiiie ettt bt b e bt bt b e e st et e nbesbesbesbeeee e 36
(@0 0o [110 oIS 37
BIt VATTADIES ... e et e e e re e reenas 37
Multiplication, division @nd MOAUIO............cuiiiiiiii e e 38
Precedence Of C OPEIALOIScueiie e sttt sttt ettt re e e e e aesaesteaneenee e eneenreaneanes 38
Mixed variable SizeS are allOWEdccoiiiiiiiie e 39
3.3 CONSTANTS . ttteteeteteseatestese b stes bt s ettt e st bt b e s bt b e eb e b s e b e ke e R e e b e e Rt e b e e Rt e b e b e bt e bt e st et et et et nbns 39
L0001 1= g1l 0] LTSI [0S 39
ENUMEIALION ...ttt ettt bbbttt b e ne st 40
B FUNCTIONS. ..t ttettteteseetestes bt s bbbttt b et e s bbbtk b £ b e s bbbtk e Rt e b e b bt e b b n e b et et et et 40
FUNCLION FEIUIN VAIUESvevic ettt sttt et e et ae e st e st e e ste e beesnesaeesteesreennas 40
Parameters in fUNCLION CAlIS............cooiiiiic et re e sre e 40
INEEINAL FUNCLIONS ...t et e st e st e e s te e be e eeaaeeeaeesbeesbeebeeseeeneeas 41
T I 0 X L TSSO U PP ROT RO ROPROP 41
3.6 ACCESSING PARTS OF A VARIABLEocutiitiaitietiatesitesieesteesteesteasbesseesssesbeasbeesbessbesseesanesaeesneanseanseans 43
3.7 G EXTENSIONSutiittietiestee it ettt sttt e sbe et s bt e st e b e s bt e sb e e ebe e bt e ae e e b e e eb £ ekt e mbeeb b e sb e e nb e e nbeenbeambeenneseeenbeenes 43
3.8 PREDEFINED SYMBOLScuttttiteieteatestesesteseesesteseesestestesesteseesessestesessessesessessesessesseseasessensasesseseasessenens 44
Extensions to the standard C KEYWOIAScc.ciiiiriviieeeiese st 44
Standard C KEYWOITS USEcvevviiieiieieeeeeieriesiesiestesteeeesee e ste e sneere e esee st e stestesneaneenaesaeseeseesnessenseans 44
BT 2T 0] 1T = () USSR 45
Function offsetof(struct_type, StruCt._ MEMDEI)c.ooeiiii e 45
Automatically defined macros and SYMDBOIS ..o 45
Macros _ FILE and LINE ..ottt ettt sre s 46
Macros DATE_ and TIME ..ottt sttt et ae e 46
3.9 UPWARD COMPATIBILITY ..ttt tttettattauteateesueesteesteaseesssessesssessseasseasseasseassesssesseesbesssesssssnsesssessesssesnsenns 46
4 PREPROCESSOR DIRECTIVES.......cciitititittiste ettt sttt sttt ssete st saatesnessasasneseas 47
240 1) 1] T ST OSO SRR 47
MECIO CONCALENALION.......cuiiiiiitiitiiite sttt bbb bbbttt st nb e bt 47
Y= ot (O ISy T [To= 1T oSSR 47

o Tl 110 [OOSR 48
000) OSSO PRSP 48

3 | OSSO P PR 48
(01 OSSP P PR 49
21 1010 Y PSSRSO 49
2] [OSSO 49
] TSSOSO USSR 49
22 0o L ST OSOSPSSRN 49
2] o (0] USRS 49
22117 L] oSSR 50
LTS ST Vo T SRS 50
4.1 THE PRAGMA STATEMENT ..vtutttiiterteteatesteseatestesesteseesestesaeestesteseesesseseesessesessesseseesessesessessessssessensasens 50
#pragma alignLsbOrigin <a> [10 <D>] .cviiiiiiiiecc 50
HPragMa @SM2VAL L.....eeieeieeieiieeeee st estee st e e e e s e sseesseesteesteeneeassesseesseesteesteeseeanseaneeaseesseessennseensnnnenns 50
#pragma assert [/] <type> <text field=>........c.coevrereiiiir i 50
#pragma assume *<pointer=> in rambank N> ..o 50
#pragma bit <name> @ <N.B or variable[.B]> ..o 50
#pragma cdata[ADDRESS] = <SVXS>, .., VXSS ..ot 51
#pragma char <name> @ <constant or variable>ccccoviiiiiiinienie e 51
#pragma Chip [=] SUBVICE™S ...ttt b et sbesbe b ene s 51
#pragma codepage [=] <0,1,2,3, .. 15> .. 51
#pragma computedGoto [S] <0,1,25 ..ouiiiiecice e eneas 52

CC5X C Compiler B Knudsen Data

#pragma config [/<regNr> <value>] [<id>] = <state> [, <id> = <state>]ccocevvvrivrivrivrinnnnns 52
#pragma config_def [S] SVAlUEScov v 52
#pragma config_reg [S] SAAAIESS™.......cciiiiiiie ettt sbe e 53
#pragma config_reg2 [=] <QAArESS........occi i 53
#pragma data_area [=] <start_address> : <last_address>.........ccccvviriiieiininieiice e 53
#pragma iNHINEMALh 0,13ot bbbttt st sbesbesbesneas 53
HPragME INSEITCONSEeiteitietiei ettt b e b e b e b et et e b e be st e ebe e bt e e e nbenbesbesbeaneas 53
#pragma interruptSaVeCNECK SNW,ES ...ttt bbb 53
HPragma liIDrary SO/L> ... ettt r ettt renreenes 53
#pragma location [=] <0,1,2,3,.. 15, = S i ene s 54
#pragma mainStack <minVarSize> @ <lowestStartAddr=>.........c.ccccecvviviivrviireieicse e 54
#pragma minorStack <maxVarSize> @ <lowestStartAddr=cccccoeveieierene s 54
#pragma optimize [=] [N:] <O,L> ..ot nrenne s 54
#pragma Origin [S] <EXPIESSION>........ccviveieeierieseseseereeeeiestestestesreereesesseseestesreaseeseesseseeseesressessens 55
#pragma packedCdataStrings <O,1> bbbt ne s 55
#pragma rambank [=] <0,1,2,3,..31, - > it 55
HPragma rambase [S] NS ...ttt bbbt bbbt e et nn b b eneas 55
#pragma ramdef <ra> : <rb> [MAPPING]cccoiiiiiiie e e 56
HPragma FESEIVECTON SN ...ttt b ettt e b e bt e s be e sbe et e e b e eabesbeesbeesbeanbennnens 56
#pragma return[<n>] = <Strings OF CONSLANTS Scccoiiiiiiiiiriie e 56
#pragma SharedATOCALIONc.eieiiieie ettt re e e e e saesresnenrenreanens 56
#HPragma StACKLEVEIS N> ..o ettt arenrenreenes 56
HPragma UNTOCKISRo.viieieieecc ettt sttt e e et e besreene e s e e e e neeneenrenreanens 56
#pragma updateBank [entry | exit | default] [S=] <O,1> .oooiiiiiiieccee e 57
#pragma update FSR [S] <O, 1> ..t ene s 57
#pragma update IRP [S] <O,1> ...ttt bbbt ne s 57
#pragma update PAGE [S=] <O,13 ..ot 57
#pragma update RP [S] <O,1> ..t bbbt 57
#pragma user_ID_addr [S] SQAAIESS>........ccciiiiiiieierienierie ettt bbb eneas 58
#pragma VersionFile [<FIIEST ... e 58
#pragma wideConstData [N | P | 1] oottt 58
4.2 PICMICRO CONFIGURATIONciittireueraresenraresessssesessasesessasesessesesessase e snesesessesssesnesesssnesesennssesessaneses 58
5 COMMAND LINE OPTIONS ...ttt nnane s 60
5.1 OPTIONS IN A FILE ..ectiteiieireiene st sn ettt m st b n et r e n e n et nen e 63
5.2 AUTOMATIC INCREMENTING VERSION NUMBER IN A FILEcctirireireeriesrereesreeesneeesneeesnenesennenes 63
5.3 ENVIRONMENT VARIABLEScutvitiiiraresinearisesmaresessaseessene s sssne s s nn s snenssesnanesennasesennas 64
6 PROGRAM CODE ..ottt ens 65
6.1 PROGRAM CODE PAGES.......cciiiiiiitiitiitt sttt sttt sr bbbt 65
Another way of 10CatiNg FUNCLIONScouiiiii e e 65
The Page tYPE MOGITIET ..ottt sb ettt e e nbeseeeneas 66
Page SEIECTION DILS.....cueieiiiiiee ettt b et b e ne bbb 66
6.2 SUBROUTINE CALL LEVEL CHECKING......ucitiiiiiiiiite ittt 66
Stack level checking When USING INTEITUPL.........ccvoiviieiiiiie et 66
Functions shared between independent Call treeS.........cvoveieiiiiie i 67
RECUISIVE TUNCLIONS.cviiiireis ettt 67
8.3 INTERRUPTS ...cuitiiesereteresreie e sr et sm et n e r et e et R et E bRt r e n et r e r e 67
Custom INErruPt SAVE aNd FESTOTEcvvcvieieiie ettt e e e e seesresaesneens 69
6.4 STARTUP AND TERMINATION CODEccviuiiviriiirareinreeesrereessesee s sesne e snese s sesesnesesssneesessesennas 69
Clearing ALL RAM TOCALIONScoiiiiiteitesie ettt sttt sttt ene et e e e e saesbesaeeneans 69
6.5 LIBRARY SUPPORT ...cuttitiitiiiietieitiire st sri sttt st an bbbt sa bbbkt ne s bbbt et se b nneen s 70
IMAEN TIDFAFTES ...ttt bttt b e bbb e bt s e e e b b sbeans 71
INEEGET HDTAITES ...ttt e e b bbbt et e e b sbesbesreeneas 71
FIXEU POINE TIDFAITES ...ttt bbbt b e bbbt e e bbb ans 73
F10ating POINt IIDFATIESc..oiiie bbb e sbe s 73

CC5X C Compiler B Knudsen Data

Floating point library fUNCLIONSc.cveiiii e 74
Fast and compact inliNE OPEIAtiONSccceviviiiieeieiire e sr e sreereens 76
Combining inline integer math and library calls............ccoooiiiiiii 76
Using prototypes and MUItiple COUE PAGESeverueruerterieiieie ettt sttt ettt se b e e 77
FiXEA POINT BXAMPIE ... b bbb bbbt bttt e e e e be b eneanes 78
F10ating POINt EXAMPIE.....c.eiiie ettt bbbt b e e b ens 78
HOW 0 SBVE COUR........eteeiitieeeie ettt ettt bbbt h et b e bbbt et e b e e e nbesbesbeenes 79
5.6 INLINE ASSEMBLYc.utiiutiiutiiutenteeteasteastesteesbeesbeesbeaaaeabesaseeaeesbe e bt ambeasbeabbeebeesb e e nbeenbeanbeeneeeneeaneenbeenns 79
Direct COURM INSIFUCTIONSc.viviitiiiiiiiee ettt bbb e 84
Generating single instructions USiNGg C StAteMENTS.........cccvviviierieriere e 85
6.7 OPTIMIZING THE CODEcuttiuiitiitinietisteiesesiestesestesteses b stese b testsbesbes e abe st besbe e be st benesbe b enesbenbeneeee 86
L0 010111120 1YY] - S 86
LT ol aTo] [0 o] o] £ 4T o] SR 87
6.8 LINKER SUPPORTcttuttteateteteatesteseatesteseatesseseatesseseesesseseasesseseabenses e et e b es bt e s e e b nb e st ab e nb s bt nbe s bentenes 88
Using MPLINK 0r @ SiNgIe MOUUIEoouiiiiiiiee et 89
Variables @Nd POINTEESoouiiiiiiie ettt bbb b e b et e e s et et e benbesbesbeeneas 90
Enhanced core 14 and bank DOUNGAIIEScoeiiiiiiiie e 91
LOCAI VAITADIES ...ttt bttt ne et eae s 91
HEAAEE FIIBS ...t b et bttt b et e et bt bt bt e ne e e e b b eaeens 91
USING RAM DANKS ...ttt bbbt b et b e bbb e bt e b e e e besbeeeeanes 91
2T 01 LA o = o S 91
FUNCLIONS ...ttt bbbt s bbbt bbbt bbb b st ettt e bt 92
USING COUB PAGES. ..vvereererteserarteeetestestessesseessessessessessesseaseeseeseessesseaseasesssessessesestessesseanseseeseessessessenses 92
L0102] o] £ OSSPSR 92
(08 1] I8 LY =] Il T od T oo S 93
L070]10] o1V 1=To oo (o U OO U RSP URURTOR 93
Recommendations When using MPLINKooiii e e e 93
IMIPASIM <.ttt s et R R R R bR R R R bRt R bRt Rttt tere et 94
The MPLINK SCHIPE FIlE ...t bbb 95
EXample With 3 MOUUIESc.eiiiiieiee bbbttt se bbb 97
6.9 THE CDATA STATEMENT ..uutitietietiestesttesteesteesteasseasseessessseabeasbeeabeaabeasseasseaaeeabeeabeanbeanbeasbesbsenbeeseeas 100
UsiNg the cdata StAtEMENTcc.oiiieiieeeese et e s reere e e e e seestesreaneas 101
StOriNG EEPROM GALAc.ceiieieieieieeeie ettt st neena e s e e e nreneennesneenes 102

T DEBUGGING ..ottt bbbt bbb bbbt bttt ettt re st 103
7.1 COMPILATION ERRORS......uttitiitiiterietistesteteste e teste et st st sttt st st s et st se b b s e abe e s e abe st s abenbeneans 103
Error and warning detailSc..cveveieiiiiie e ane s 104
Some common compilation ProbIEMSccvvviiiiiece e 104
7.2 MPLAB DEBUGGING SUPPORT......uttttttttesteesteesteasstaseassesssesseesseaaseassessssssssssessssssseansesssesssessssssesssees 104
ICD and ICD2 deBUGQING .. veiveiieeiieieitisie ettt bttt b bbbt et b e b b be e 105
7.3 ASSERT STATEMENTS. ...uttitteitietieteastesstesteesteesbea bt asseasseaseeabeesbeeabeeebeassessseaaeeabeeabeenbeanbeasbesbbenbeenbeas 105
7.4 DEBUGGING IN ANOTHER ENVIRONMENTuttittiitiiiinttesteesteeiesbesieesiessieesteassesnsessnessseseeesieessessneas 106
8 FILES PRODUGCEDcccotiitittitiistiseiett sttt ettt ne bt e et st sane st 108
8L HEX FILE ittt bbb bbb bbb bt bbbttt n e 108
8.2 ASSEMBLY OUTPUT FILE....cutitiiiiiitiitiietiste ettt bbbttt sttt 108
8.3 WARIABLE FILE ..ottt ettt bbbt b bbbt bbbttt bttt enes 109
B I 1o T =SSOSO 110
8.5 FUNCTION CALL STRUCTURE ..c.vtutititisiattstetesestestesessestesestessesessessessssestensssessensasessensesessensessssensenens 110
8.6 PREPROCESSOR OUTPUT FILE.....iuiitiiiiriitirieieiiste ettt ettt sttt sttt st 111
9 APPLICATION NOTES.ottt ettt bt s et ne bt ne st 112
0.0 DELAY S ittt ettt ettt ettt ettt ettt h bt b bR e R bt b £ e R e e eRe 4Rt e R e AR e R e e eRe e be e bt eR b e ehbenbeenbeenbe e nreennas 112
9.2 COMPUTED GOTO ..utieutieteesieestee it e steesbeasseesseatbesbe e be e beebeeseeaaeeahe e sbe e abe 2 bt e mbeanbeebbeeb b e sbeenbeenbeanneanneenne 113
Built in skip() function for COMPULEd GOTO.......ecueiiiiiieieeie e 114
OFIGiN AlIGNMENT ... bbbttt s b e b e b e bt e b e et e b e se e besbeereenes 114

CC5X C Compiler B Knudsen Data

(000401 o101 (=To o0 (0 TN =0 o] - PSSRSO 114
T L] o] =TSSR 115
0.3 THE SWITCH STATEMENT .uuttttiiteeieiiitttttieeeeessssbbbtesssesssssbbbtesseesssaiabbbesaeasssssabbbabssesesssasbbabasssesssassrrres 117
PN o] N[5] 5 GRS OTRTR 118
AL USING INTERRUPTS L.uttiiiiiiiiiiitttiii e e e e s siitbbties s e e s s sasbbbbassssssseiabbbasssaessssbbbabesesesssasbbbbessseessasabbbaaseeeseses 118
A2 PREDEFINED REGISTER NAMESciiiiiiiitiiiiie e seitt et s ettt e e s s s s bbb b e s s s s s s sabb bt e e s s e s s s sabbbaaseeseseaes 119
A3 ASSEMBLY INSTRUCTIONS. ... uutttiiiiiiiiiiititrieeeeessisitrtetseessssibbassssesssssisbbstesasesssabbabasssesssasbbbasseessssies 120
AdditioNal TOr the 14 DIt COTE ..eeiiieeiie ettt s e e s s b e e e s et e e e s s sbb s e s ssbbaeesns 120
Additional for the ENhanced 14 DIt COTE.......couiiiiiiiirie ittt ee s sbee s srae e srae e 120
Additional for the ENhanced 12 DIt COTE.......ccuiiiiiiiirii ittt bee b e sree e sree e 121
INSErUCTION EXECULION TIME ..veiiiii ettt et s s sbb e e st e e sab e s s e e s sabe s sabeesbbessressbenens 121

CC5X C Compiler B Knudsen Data

1 INTRODUCTION

Welcome to the CC5X C compiler for the Microchip PICmicro family of microcontrollers. The CC5X
compiler enables programming using a subset of the C language. Assembly is no longer required. The
reason for moving to C is clear. Assembly language is generally hard to read and errors are easily
produced.

C enables the following advantages compared to assembly:
» Source code standardization

» Faster program development

» Improved source code readability

» Easier documentation

» Simplified maintenance

« Portable code

The CC5X compiler was designed to generate tight and optimized code. The optimizer automatically
squeezes the code to a minimum. It is possible to write code that compiles into single instructions, but
with C syntax. This means that the C source code can be optimized by rewriting inefficient expressions.

The design priority was not to provide full ANSI C support, but to enable the best possible usage of the

limited code and RAM resources. If the compiler generated less optimal code, this would force assembly

to be used for parts of the code.

CC5X features

» Local and global variables of 8, 16, 24 and 32 bits, plus bit variables

» Efficient reuse of local variable space

» Generates tight and optimized code

» Produces binary, assembly, list, COD, error, function outline and variable files
» Automatic updating of the page selection bits

* Automatic updating of the bank selection bits

» Enhanced and compact support of bit operations, including bit functions
» Floating and fixed point math up to 32 bits

e Math libraries including functions like sin(), log(), exp(), sqrt(), etc.

e Supports standard C constant data and strings in program memory (const)
» Automatic storing of compressed 2*7 bit data in each code word if possible
« Pointer models of 8 and 16 bits, mixed sizes in same application allowed
* RAM and/or ROM pointers

» The size of single pointers can be automatically chosen by the compiler

» Linker support (MPLINK), interfaces with assembly (MPASM) modules
» Extended call level by using GOTO instead of CALL when possible

* Inserts links to "hidden" subroutines

e Access to all assembly instructions through corresponding C statements

e Inline assembly

e Lookup tables: #pragma return[] = "Hello world"

e Integrated interrupt support

» Device configuration information in source code

Size (in bits) of the variables supported by the different compiler editions:

FREE STANDARD+EXTENDED
i nt eger 8+16 8+16+24+32
fixed - 8+16+24+32

fl oat 24 16+24+32

CC5X C Compiler B Knudsen Data

1.1 Supported devices

12 bit core (PIC16F5X, PIC10, PIC12, etc.):
e up to 2048 words of code in 1 - 4 code pages
e upto 73 byte RAMin 1 -4 banks (132 byte / 8 banks for enhanced 12 bit core)

14 bit core (PIC12, PIC14, PIC16):
e up to 8192 words of code in 1 - 4 code pages
e upto512 byte RAM in 1 - 4 banks

14 bit enhanced core (PIC16F1xxXx):
e upto 32768 words of code in 1 - 16 code pages
e upto8k(5k) RAM in 1 - 64 banks

1.2 Installation and System Requirements

The CC5X compiler uses 32 bit processing (console application) and runs on PC compatible machines
using Microsoft Windows.

Installing CC5X is normally done by running the installation program for the latest version. Multiple
versions can be installed.

CC5X is now ready to compile C files. Header and C source files have to be created and edited by a
separate editor (not included), for instance in the MPLAB suite.

The UTF-8 representation of the Byte Order Mark is the byte sequence OXEF,0xBB,0xBF. This sequence
is allowed in the start of a source file.

The same installation program can be used to un-install the compiler. Alternatively the CC5X files can be
deleted without any un-installation procedure.

Support for long file names

CC5X (WIN32 editions) supports long file names. It is also possible to use spaces in file names and
include directory names. Equivalent include directory option formats:

-1"C\Program Fi |l es\ cc5x"
-1 C. \ progra~1\ cc5x

Equivalent include file formats:

#include "C \Program Fil es\cc5x\C file"
#i nclude "C: \progra~1\ccb5x\Cfil e~1"

The alternative to long names is the truncated short format. The truncated form is decided by the file
system. The best guess consists of the 6 first characters of the long name plus ~1. The last number may be
different (~2) if the first 6 characters are equal to another name in the same directory.

User interface

The CC5X compiler is a command-line program that can be run in a console window in the Windows
environment. It requires a list of command line options to compile a C source file and generate the
required files.

Starting CC5X from Windows can be done by clicking on the executable file. The list of compiler
command line options is then written to a console window. The normal way of using CC5X is to use it as
a tool from an integrate environment like MPLAB X.

CC5X C Compiler B Knudsen Data

Compiling a program requires a file name and command line options:

ccbhx sanplel.c <enter>

1.3 MPLAB Support

CC5X can be selected as a tool in MPLAB X and the older MPLAB, which offers an integrated
environment including editor and tool support (compilers, assemblers, simulators, emulators, device
programmers). Compilation errors are easily handled. MPLAB supports point-and-click to go directly to
the source line that needs correction. CC8E supports COFF and COD debugging file format. Please refer
to supplied file “install.txt’ for further information.

1.4 The SETCC Utility

SETCC is a small utility application for the CC5X/CC8E compilers. Note that the SETCC utility is only
available for licensed editions. SETCC is useful for:

a) Generating device specific header files
b) Setting config symbols for a device
c) Compiling projects

Reasons for generating header files using SETCC:
- predefined header files may not be ready yet for new devices
- the number of register symbols can be selected
- the bit name format can be selected
- the register and bit names are generated according to the INI and CFGDATA files as found in
the MPLAB X package.

Header file options:
- include all alternative register names (defined in INI file)
- include bit names
- include alternative bit names (defined in INI file)
- include all enumerated bit names
- convert bit names on format NOT_NNN and nNNN to NNN_
a) long bit name format: REGISTERNAME_BITNAME
b) short bit name format: BITNAME - limited set only
c) combined bit name format: BITNAME / REGISTERNAME_BITNAME

The device header files supplied with the compiler can alternatively be used instead of generating new
header files for each project.

Please refer to file ‘setcc.txt’ for further information.

1.5 Summary of Delivered Files

CC5X. EXE : compiler

SETCC.EXE (1): header file and config utility tool

SETCC. TXT : information on utility tool

| NSTALL. TXT : installation guide

MPLAB- O. TXT . integration with old MPLAB (version 5 - 8.92)
I NLI NE. TXT . information on inline assenbly syntax

CHI P. TXT : how to make new chip definitions

CDATA. TXT : info on the #pragma cdata statement

CONST. TXT : standard C strings and constant data

10

CC5X C Compiler

B Knudsen Data

CONFI G TXT

STARTUP. TXT

LI NKER. TXT
C- GOTO. TXT

OPTI ONS. TXT

ERRATA. TXT
MATH. TXT
NEWS. TXT
README. TXT

DEFMPX16. H
I NTI6CXX. H
I NLI NE. H

HEXCODES. H

CC5X. MIC
TLCCS5X. I N

OP. I NC
RELCC. | NC

SAMPLEL. C
SAMPLE2. C
SAMPLES. C
DEMO- ENH. C
DEMO- E12. C
1 CBUS. C
I1GCOM C
SERI AL. C
STATE. C
DELAY. C
I NT16XX. C
Dl v1i6_8.C
SCALI NG. C

MATHL16. H
MATH16M H

MATH24. H
MATH24M H
MATH32. H
MATH32M H

MATH16X. H
MATH24X. H
MATH32X. H
MATHL16F. H
MATH24F. H
MATH32F. H
MATH24LB. H

MATH32LB. H

mventil.c

(1):
(1):
(1):
(1):
(1):
(1):
(1):
(1):

(1):

(1):

(2):

the chip configuration bits

speci al startup sequences

using MPLINK to link several nmodules (C or asm
application notes on conputed goto

conpil er comand |ine options

silicon errata issues

math |ibrary support

recent added features

this file

conpiler definitions for the MPLAB X GU

i nterrupt header file

C macros for emulating inline instructions
direct coded instructions

MPLAB t ool
MPLAB t ool

configuration file
configuration file

conmand line options in a file
options for object nmodul es (MPLI NK)

m ni mal program exanpl e

recommended program structure and syntax sanpl es
data stored in program nenory and pointers
exanpl e syntax for new Enhanced 14 bit Core
exanpl e syntax for the Enhanced 12 bit Core
I1Cbus interface

I 1 G bus comuni cation

serial communi cation (RS232, RS485)

st at e nachi nes

i mpl enenti ng del ays
sinmple interrupt exanple
fast division routine
conpact and fast 16 bit math scaling routine
8-16 bhit
8-16 bit

math library
multiply, speed

8-24 bit
8-24 bit
8-32 bit
8-32 bit

math library
mul tiply, speed
math |ibrary
multiply, speed

16 bit
24 Dbit
32 bit

fixed point
fixed point
fixed point

library
library
library

16 bit
24 Dbit
32 bit

floating point
floating point
floating point

library
library
library
24 bit floating point functions
(log,sqrt, cos,..)

32 bit floating point
(log,sqrt, cos,..)

functions

mul titaski ng exanmpl e

11

CC5X C Compiler B Knudsen Data

nsg. h (2): nultitasking nessage library

bi nsem h (2): nultitasking binary semaphore library
semaphore. h (2): nultitasking semaphore library
event. h (2): nultitasking event library

del ay. h (2): nultitasking delay and timng library

12C508.H .. : header files for specific chip support

(1) Not available in the FREE edition
(2) Only available in the EXTENDED edition

1.6 Short Program Example

/* gl obal variables */
char a;
bit bl, b2,

/* assign names to port pins */
bit in @ PORTA. O;
bit out @ PORTA. 1,

voi d sub(void)

{
char i; /* a local variable */
/* generate 20 pul ses */
for (i =0; i <20; i++) {
out = 1;
nop() ;
out = 0O;
}
}
voi d mai n(voi d)
{

/1 if (TO==1 &% PD==1/* power up */) {
/1 WARM RESET:

/1 clearRAM); // clear all RAM

/1 }

/* first decide the initial output |evel
on the output port pins, and then
define the input/output configuration.
Thi s avoi ds spi kes at the output pins. */

PORTA
TRI SA

Ob. 0010; /* out =1 */
Ob. 1111.0001; /* xxxx 0001 */

a =29, /* value assigned to global variable */

do
if (in==20) /* stopif "in" is low*/
br eak;
sub();

12

CC5X C Compiler B Knudsen Data

} while (-- a>0); [/* 9iterations */

/1 if (some condition)
/1 got o WARM RESET;

/* main is termnated by a SLEEP instruction */

1.7 Defining the PICmicro Device
CC5X offers 3 ways to select the PICmicro device in an application:

1) By a command line option. MPLAB will generate this option automatically.
- p16F883

2) By a pragma statement in the source code. Note that the —p command line option will override the
selection done by #pragma chip. This pragma should not be used in combination with MPLAB.

#pragma chip Pl CL6F883

3) By using include to directly select a header file. This is not recommended because there will be an
error if the command line option is also used.

#i ncl ude " 16f 883. h"

NOTE 1: When using a pragma statement or include file, remember to use it in the beginning of the C
program so that it is compiled first. However, some preprocessor statements like #define and #if may
precede the #include/#pragma statement.

NOTE 2: When using the command line option or the pragma statement, CC5X will use the internal
definitions for some devices. If the device is not known internally, automatic include of a header file is
started. The internal known devices are: 16C54,55,56,57,58, 61,64,65, 71,73,74, 84, 620,621,622.

NOTE 3: If the header file does not reside in the default project folder, then the path name is required.
This can be supplied by a command line option as an include folder/directory (-I<path>).

NOTE 4: Debugging means that the debugger may use certain device resources. These resources should
not be used by the application during debugging. The debugger and device documentation should be
consulted. Reservations for some devices are supplied in the device header files. The device header file
should also be inspected. Activating the reservations is done by defining a symbol before the header file
is compiled:

a) By a command line option:
-DI CD_DEBUG or - DI CD2_DEBUG

b) By using #define in combination with #pragma chip or #include:
#define 1CD DEBUG // or | CD2_DEBUG

#pragma chip PICI6F877 // or #include "16F877. H'

13

CC5X C Compiler B Knudsen Data

1.8 What to do next

It is important to know the PICmicro family and the tools well. The easiest way to start is to read the
available documentation and experiment with the examples. Then move on to a simple project. Some
suggestions:

e study the supplied program samples

» compile code fragments and check out what the compiler accepts

» study the optional assembly file produced by the compiler

Note that using more than one ram bank or code page requires pragma instructions.

Typical steps when developing programs are as follows:
» describe the system; make requirements

e suggest solutions that satisfy these requirements

» write detailed code in the C language

» compile the program using the CC5X compiler

» test the program on a prototype or a simulator

Writing programs for the PICmicro microcontroller family requires careful planning. Program and RAM
space are limited, and the key question is often: Will the application code fit into the selected device?

File ‘readme.txt’ contains information on how to write code that can be
compiled by CC5X.

14

CC5X C Compiler

B Knudsen Data

2

The compiler prints information on the screen when compiling. Most important are error messages, and
how much RAM and PROGRAM space the program requires. The compiler output information is also

VARIABLES

written to file *.occ. Example:

d

el ay. c:

Chip = 16C74

RAM 00h @ -------- c-cmmme mmoo o
RAM 20h ::.***** kkhkkkkhkhkk *kkxkhkkhkkkk*k
RAM 40h kkhkkkkhkkhkk *kkkhkkhkkkhkk k *hkkxkkhkk*k
RAM 60h kkhkkkkhkhkkk *kkkhkkhkkkhkk k *hkkxkkhkkk*k
RAM 80h @ -------- c--mioe oo
RAM th kkkkkkhkhk *kkkkkikikik *kkkkkkk*kx
RAM (:Oh kkhkkkkhkhkk *kkkhkkhkkkhkk k *hkkxkkhkk*k
RAM th kkhkkkkhkhkk *kkkhkkhkkkhkkhk k*khkkxkkhkk*k

kkkkhkkk*k

kkkkhkkkk*x

kkkkhkkkk*k

*kkkkkxk

kkkkkkk*k

kkkkhkkk*k

Optimzing - renpved 11 instructions (-14 9%

File 'delay.asn
Codepage 0 has 68 word(s) : 3%
Codepage 1 has 0 word(s) : 0 %
File 'del ay. hex'

Total of 68 instructions (1 %

2.1 Information on RAM allocation

Priority when allocating variables:

1

2.
3.
4,

The compiler prints information on RAM allocation. This map is useful to check out which RAM

Variables permanently assigned to a location
Local variables allocated by the compiler

Global variables allocated by the compiler (up to 80 bytes)
Global variables greater than 80 bytes (Enhanced 14 bit core only)

locations are still free. The map for the 16C57 chip may look like this:

Mapped RAM 00h : -------- LT o kEEx
Bank 0 RAM 10h : ====4==* *****x%*xx*
Bank 1 RAM 30h : .. G***** *kkkkkkk

Bank 2 RAM 50h kkkkhkkhkkhk *kkhkkhkkkkk
Bank 3 RAM 70h _7****** kkkkhkkk*k

Symbols:
* : free location
- predefi ned or pragna vari able
= | ocal variabl e(s)
. gl obal vari abl e
7 7 free bits in this location

Detailed information on memaory allocation is written to file <src>.var when using the -V command line

opt

ion.

15

CC5X C Compiler B Knudsen Data

2.2 Defining Variables

CC5X supports integer, fixed and floating point variables. The variable sizes are 1, 8, 16, 24 and 32 bit.
The default int size is 8 bits, and long is 16 bits. Char variables are unsigned by default and thus range
from 0 to 255. Note that 24 and 32 bit variables are not supported by all CC5X editions.

Math libraries may have to be included for math operations (Chapter 6.5 Library Support on page 70).

CC5X uses LOW ORDER FIRST (or little-endian) on variables. This means that the least significant byte
of a variable is assigned to the lowest address. All variables are allocated from low RAM addresses and
upwards. Each RAM location can contain 8 bit variables. Address regions used for special purpose
registers are not available for normal allocation. An error message is produced when there is no space
left.

Special purpose registers are either predefined or defined in chip-specific header files. This applies to W,
INDF, TMRO, PCL, STATUS, FSR, Carry, PD, TO, etc.

Integer variables

unsi gned a8; /1 8 bit unsigned
char a8; /1 8 bit unsigned
unsi gned | ong i 16; /1 16 bit unsigned
char varX;

char counter, L _byte, H byte;
bit ready; // 0 or 1
bit flag, stop, semaphore;

int i; /1 8 bit signed
signed char sc; // 8 bit signed
| ong i 16; /1 16 bit signed

uns8 u8; // 8 bit unsigned
unsl1l6 ul6; // 16 bit unsigned
uns24 u24; // 24 bit unsigned
uns32 u32; // 32 bit unsigned

int8 s8 // 8 bit signed

int1l6 s16; // 16 bit signed

int24 s24; // 24 bit signed

int32 s32; // 32 bit signed
The bitfield syntax can also be used:

unsi gned x : 24; /1 24 bit unsigned
int y: 16; /1 16 bit signed

The value range of the variables are:

TYPE SIZE M N MAX
int8 1 -128 127
intl6 2 - 32768 32767
i nt24 3 - 8388608 8388607
i nt32 4 -2147483648 2147483647

16

CC5X C Compiler

B Knudsen Data

uns8 1 0 255
uns16 2 0 65535
uns24 3 0 16777215
uns32 4 0 4294967295

Floating point

The compiler supports 16, 24 and 32 bit floating point. The supported 32 bit floating point format can be
converted to and from the IEEE754 format by 3 instructions (macro in math32f.h).

Supported floating point types:

float 16 16 bit floating point

float, float24 : 24 bit floating point

double, float32 : 32 bit floating point

For mat Resol ution Range

16 bit 2.4 digits +/- 3.4e38, +/- 1.1e-38
24 bit 4.8 digits +/- 3.4e38, +/- 1.1e-38
32 bit 7.2 digits +/- 3.4e38, +/- 1.1le-38

Note that 16 bit floating point is intended for special use where accuracy is less important. More details
on the floating point formats are found in ‘math.txt’. Information on floating point libraries is found in
Chapter 6.5 Library Support on page 70.

Floating point exception flags
The floating point flags are accessible in the application program. At program startup the flags should be
initialized:

/1 reset all flags,
/1 enabl e roundi ng

FpFl ags = O; di sabl e roundi ng

FpRoundi ng = 1;

Also, after an exception is detected and handled in the application, the exception bit should be cleared so
that new exceptions can be detected. Exceptions can be ignored if this is most convenient. New
operations are not affected by old exceptions. This also enables delayed handling of exceptions. Only the
application program can clear exception flags.

char FpFlags; // contains the floating point flags
bit FpQOverfl ow @ FpFlags.1; // fp overflow
bit FpUnderFlow @ FpFlags.2; // fp underflow
bit FpDiv0 @FpFlags.3; // fp divide by zero
bit FpDomai nError @ FpFlags.5; // domain error
bit FpRoundi ng @ FpFl ags. 6; // fp rounding

/1 FpRoundi ng=0: truncation

/1 FpRoundi ng=1: unbi ased rounding to nearest LSB

IEEE754 interoperability

The floating point format used is not equivalent to the IEEE754 standard, but the difference is very small.
The reason for using a different format is code efficiency. IEEE compatibility is needed when floating
point values are exchanged with the outside world. It may also happen that inspecting variables during
debugging requires the IEEE754 format on some emulators/debuggers. Macros for converting to and
from IEEE754 are available:

17

CC5X C Compiler B Knudsen Data

mat h32f . h:
/1 before sending a floating point val ue:
fl oat 32Tol EEE754(f | oat Var) ;

/1 change to | EEE754 (3 instr.)

/1l before using a floating point val ue received:
| EEE754ToFl oat 32(f | oat Var) ;
/1 change from | EEE754 (3 instr.)

mat h24f . h:
fl oat 24Tol EEE754(f | oat Var) ;
/1 change to | EEE754 (3 instr.)
| EEE754ToFl oat 24(f | oat Var) ;
/1 change from | EEE754 (3 instr.)

Fixed point variables

Fixed point can be used instead of floating point, mainly to save program space. Fixed point math uses
formats where the decimal point is permanently set at byte boundaries. For example, fixed8_8 uses one
byte for the integer part and one byte for the decimal part. Fixed point operations map to integer
operations except for multiplication and division, which are supported by library functions. Information
on fixed point libraries is found in Chapter 6.5 Library Support on page 70.

fixed8 8 fx;

fx.low8 : Least significant byte, deciml part
fx.high8 : Mst significant byte, integer part

MSB LSB 1/256 = 0.00390625

07 01 : 7 + 0x01*0.00390625 = 7.0039625

07 80 : 7 + 0x80*0.00390625 = 7.5

07 FF : 7 + OxFF*0. 00390625 = 7.99609375

00 00 : O

FF 00 : -1

FF FF : -1 + OxFF*0. 00390625 = -0.0039625

7F 00 : +127

7F FF : +127 + OxFF*0. 00390625 = 127.99609375
80 00 : -128

Convention: fixed<S><I|>_<D>:
<S> : 'U : unsigned
<none>: si gned
<I>: nunber of integer bits
<D> : nunber of decinmal bits

Thus, fixed16_8 uses 16 bits for the integer part plus 8 bits for the decimal, for a total of 24 bits. The
resolution for fixed16_8 is 1/256=0.0039, which is the lowest possible increment. This is equivalent to 2
decimal digits (actually 2.4 decimal digits).

Built in fixed point types:

Type: #byt es Range Resol ution
fixed8_8 2 (1+1) -128, +127.996 0. 00390625
fixed8_16 3 (1+2) -128, +127.99998 0. 000015259
fixed8_24 4 (1+3) -128, +127.99999994 0. 000000059605
fixedl6_8 3 (2+1) -32768, +32767.996 0. 00390625
fixedl6_16 4 (2+2) -32768, +32767.99998 0.000015259
fixed24_8 4 (3+1) -8388608, +8388607.996 0.00390625

18

CC5X C Compiler

B Knudsen Data

fixedUs_8 2 (1+1) 0, +255.996 0. 00390625
fixedUs 16 3 (1+2) 0, +255.99998 0. 000015259
fixedUs_24 4 (1+3) 0, +255.99999994 0. 000000059605
fixedUuls 8 3 (2+1) 0, +65535.996 0. 00390625
fixedUl6_16 4 (2+2) 0, +65535.99998 0.000015259
fixedU24 8 4 (3+1) 0, +16777215.996 0. 00390625
(additional types with decimals only; no integer part)
fixed 8 1 (0+1) -0.5, +0.496 0. 00390625
fixed 16 2 (0+2) -0.5, +0.49998 0. 000015259
fixed_24 3 (0+3) -0.5, +0.49999994 0. 000000059605
fixed_32 4 (0+4) -0.5, +0.4999999998 0. 0000000002328
fixedU 8 1 (0+1) 0, +0.996 0. 00390625
fixedU 16 2 (0+2) 0, +0.99998 0. 000015259
fixedU 24 3 (0+3) 0, +0.99999994 0. 000000059605
fixedU 32 4 (0+4) 0, +0.9999999998 0. 0000000002328

To sum up:

1. All types ending on _8 have 2 correct digits after the decimal point

2. All types ending on _16 have 4 correct digits after the decimal point

3. All types ending on _24 have 7 correct digits after the decimal point

4. All types ending on _32 have 9 correct digits after the decimal point

Fixed point constants
The 32 bit floating point format is used during compilation and calculation.

fixed8 8 a = 10. 24;
fixedl6 8 a = 8 * 1.23;
fixed8 16 x = 2. 3e-3;
fixed8 16 x = 23.45e1;
fixed8 16 x = 23.45e-2;
fixed8 16 x = 0.
fixed8 16 x = -1.23;

Constant rounding error example:
Constant: 0.036
Variable type: fixedl6 8 (1 byte for deci mals)

Error cal cul ation: 0.036*256=9.216. The byte val ues assigned to the

variable are sinmply 0,0,9. The error is (9/256-0.036)/0.036 - 0. 023.

The conpiler prints this normalized error as a warning.

Type conversion
The fixed point types are handled as subtypes of float. Type casts are therefore infrequently required.

Fixed point interoperability

It is recommended to stick to one fixed point format in a program. The main problem when using mixed
types is the enormous number of combinations which makes library support a challenge. However, many
mixed operations are allowed when CC5X can map the types to the built in integer code generator:

fixed8 16 a, b;

fixed 16 c;

a=»>b+c; /1 OK, code is generated directly
a=>b* 10.22; // OK Ilibrary function is supplied

19

CC5X C Compiler B Knudsen Data

a=b*c; // anewuser library function is required!

/1l a type cast can select an existing library function:
a=>b* (fixed8_16)c;

Assigning variables to RAM addresses

All variables, including structures and arrays, can be assigned to fixed address locations. This is useful for
assigning names to port pins. It is also possible to define overlapping variables (similar to union).
Variables can overlap parts of another variable, table or structure. Multiple levels of overlapping are
allowed. The syntax is:

<vari abl e_definition> @<address | (constant_expression)>;
<vari abl e_definition> @<vari abl e_el emrent >;

Examples:

char th @ 0x25;
/1bit thl @0x25.1; // overlap warning
bit thl @th. 1; /1 no warni ng

char tty;

bit bo;

char io @tty;

bit bx0 @ bO;

bit bx2b @tty. 7;

//char tui @ bO; !/l size exceeded
/llong r @tty; /1 size exceeded

char tab[5];

long tr @tab;

struct {
long ti M
| ong uu;

} ham @t ab;

char aa @ttb[2]; /1 char ttb[10];
bit ab @aa.7; /1 a second | evel of overlapping
bit bb @ttb[1].1;

size2 char *cc @da.a; // 'da' is a struct
char dd[3] @da.sloi[1].pi.ncup;

unsle ee @fx.mdl6; // float32 fx;

TypeX ii @tab; /'l TypeX is a typedef struct

An expression can define the address of a variable. This makes it easier to move a collection of variables.

char tty @ (50+1-1+2);
bit ttl @(50+1-1+2+1). 3;
bit tt2 @(50+1-1+2+1). BX1; /1 enum{ .., BX1, .. };

Pragma statements can also be used (limited to bit and char types):
#pragma char port @ PORTC

#pragma char varX @ 0x23

#pragma bit 10pin @PORTA 1

#pragm bit ready @ 0x20.2

#pragma bit ready @ PA2

20

CC5X C Compiler B Knudsen Data

If the compiler detects double assignments to the same RAM location, this will cause a warning to be
printed. The warning can be avoided if the second assignment uses the variable name from the first
assignment instead of the address (#pragma char var2 @ varl).

An alternative is to use the #define statement:

#define PORTX PORTC
#define ready PA2

The shadowDef type modifier allows local and global variables and function parameters to be assigned to
specific addresses without affecting normal variable allocation. The compiler will ignore the presence of
these variables when allocating global and local variable space.

shadowDef char gx70 @O0x70; // global or |ocal variable

The above definition allows location 0x70 to be inspected and modified through variable 'gx70".

Function parameters can be assigned to addresses. No other variables will be assigned by the compiler to
these locations. Such manual allocation can be useful when reusing RAM locations manually.

void witeByte(char addr @0x70, char value @O0x71) { .. }
This syntax is also possible on function prototypes.

Parameter transfer can be omitted for functions sharing overlapping parameters. This also applies to bit
parameters:

bit sharedBitPar;
bit func2(bit par @sharedBitPar) { /*..*/ return Carry; }
bit funcl(bit par @sharedBitPar) { /*..*/ return func2(par); }

Supported type modifiers

static char a; /* a global variable; known in the current nodul e
only, or having the sane nanme scope as | ocal variables when used in a
| ocal block */

extern char a; // global variable (in another nodul e)

auto char a; [// local variable
/1 "auto' is normally not used

regi ster char a; // ignored type nodifier

const char a; /* ‘const’ tells that conpiler that the data is not
nodi fied. This allows global data to be put in programnenory. */

volatile char a; /* ignored type nodifier. Note that CC5X uses the
address to automatically decide that nost of the special purpose
registers are volatile */

pageO void fx(void); // fx() resides in codepage 0O
/1 pageO, pagel, .., pagel5

bankO char a; [// variable ‘a resides in RAM bank 0
/1 bankO, bank1, .., bank31

21

CC5X C Compiler B Knudsen Data

/1 shrBank : unbanked |l ocations, if avail able

size2 char *px; [/ pointer px is 16 bits wide
/1 sizel,size2

shadowDef char gx70 @Ox70; /* a variable can be assigned to a
| ocation without affecting normal allocation */

Local variables

Local variables are supported. The compiler performs a safe compression by checking the scope of the
variables and reusing the locations when possible. The limited RAM space is therefore used efficiently.
This feature is very useful, because deciding which variables can safely overlap is time consuming,
especially during program redesign. Function parameters are located together with local variables.

Variables should be defined in the innermost block, because this allows best reuse of RAM locations. It is
also possible to add inner blocks just to reduce the scope of the variables as shown in the following
example:

voi d mai n(voi d)

{
char i; /* no reuse is possible at the
outernost |evel of 'main' */
i = 9;
{ // an inner block is added
char a;
for (a = 0; a < 10; at+)
i += fx(PORTB, 0);
}
sub(i);
{ /1 another inner block to enable better reuse
char b = s + 1;
int il=-1, i2 = 0;
/1 nore code
}
}

Local variables may have the same name. However, the compiler adds an extension to produce a unique
name in the assembly, list and COD files. When a function is not called (defined but not in use), then all
parameters and local variables are truncated to the same (unused) location.

Local variables will reside in a single block not crossing any bank boundaries. This is a requirement
because of the overlapping/reuse performed within the local block allocated.

Using several stacks

The stack for local variables, parameters and temporary variables is normally allocated separately in each
bank and the shared RAM area. The bank is normally defined the same way as global variables through
#pragma rambank or bank type modifiers. This makes it possible to split the stack into several
independent stacks. Using a single stack is normally recommended, but sometimes this is not possible
when the stack size is too large.

The following pragma will define a single main stack. The main stack is not an additional stack, but tells
the compiler where the main stack is located (which bank).

#pragma nmai nStack 3 @0x20 // set |lower main stack address

22

CC5X C Compiler B Knudsen Data

Using this pragma means that local variables, parameters and temporary variables of size 3 bytes and
larger (including tables and structures) will be stored in a single stack allocated no lower than address
0x20. Smaller variables and variables with a bank modifier will be stored according to the default/other
rules. Using size 0 means all variables including bit variables.

Note that the bank defined by #pragma rambank is ignored for variables stored in the main stack.
Addresses ranging from 0x20 to 0x6F/0x7F are equivalent to the bank0 type modifier.

In some cases it will be efficient to use shared RAM or a specific bank for local variables up to a certain
size. This is possible by using the following pragma:

#pragm mi nor Stack 2 @ 0x70

In this case, local variables, parameters and temporary variables up to 2 bytes will be put in shared RAM
from address 0x70 and upward. Larger variables and variables with a bank modifier will be stored
according to the default/other rules. Using size 0 means bit variables only. This pragma can be used in
combination with the main stack. The variable size defined by the minor stack has priority over the main
stack.

The most efficient RAM usage is to use a single stack. Separation into different stacks increases total
RAM usage, and should be avoided if possible.

Temporary variables

Operations like multiplication, division, modulo division and shifts often require temporary variables.
However, the compiler needs NO PERMANENT SPACE for temporary variables.

The temporary variables are allocated the same way as local variables, but with a narrow scope. This
means that the RAM locations can be reused in other parts of the program. This is an efficient strategy
and often no extra space is required in application programs.

Arrays, structures and unions

One dimensional arrays are implemented. Note that indexed arithmetic is limited to 8 bit. Assignment is
allowed for 8, 16, 24 and 32 bit.

char t[10], i, index, x, tenp;
unsl1l6 tx[3];

tx[i] = 10000;

t[1] =t[i] * 20; [/ ok

t[i] =t[x] * 20; // not allowed
temp = t[x] * 20;

t[i] = tenp;

Normal C structures can be defined, as can nested types. Unions are allowed.

struct hh {

| ong a;

char b;
} vxli;
union {

23

CC5X C Compiler B Knudsen Data

struct {
char a;
intl6 i;
}opp;
char x[4];
uns32 | ;
} uni;

/'l accessing structure elenents
vxl.a = -10000;
uni.x[3] = vxl.b - 10;

The equivalent of a (small) multidimensional array can be constructed by using a structure. However,
only one index can be a variable.

struct {
char e[4];
char i;

} multi[5];

multi[x].e[3] = 4;
multi[2].e[i+1l] += tenp;

Large arrays on the Enhanced 14 bit core

The enhanced 14 bit core allows arrays and data structures to cross bank boundaries. This is possible
because separate RAM banks are mapped into a linear data space starting at address 0x2000.

Arrays greater than 80 bytes are allocated to multiple banks by the compiler. Such a large array does not
belong to a specific bank. The compiler will automatically handle the required mapping. Data items up to
80 bytes are allocated first. Then the large data items are allocated. A data item up to 80 bytes can only
cross a bank boundary if it is assigned a specific address (type variable @ address;). Large data items can
also be assigned to specific addresses.

Bitfields
Bitfields in structures are allowed. The size has to be 1, 8, 16, 24 or 32 bits.

struct bitfield {
unsi gned a : 1;

bi t (o
unsigned d : 32;
char aa;

} ozz;

The CC5X compiler also allows the bitfield syntax to be used outside structures as a general way of
defining variable size:

int x : 24; |/ a 24 bit signed variable

Typedef

Typedef allows defining new type identifiers consisting of structures or other data types:

typedef struct hh HH;

HH var 1,

typedef unsigned ux : 16; // equal to unsl6
ux r, a, b;

24

CC5X C Compiler B Knudsen Data

2.3 Using RAM Banks
Using more than one RAM bank is done by setting the active rambank:

/* variabl es preceding the first ranbank statement are placed in
mapped RAM or bank 0. This is also valid for |ocal variables and
paranmeters */
#pragma ranbank 1
char a,b,c; /* a,b and c are located in bank 1 */
/* parameters and | ocal variables in functions placed here are al so
| ocated in bank 1 ! */
#pragma ranmbank 0
char d; /* located in bank 0 */
The compiler automatically finds the first free location in the selected bank.
NOTE: Local variables and function parameters also have to be located. It may be necessary to use
#pragma rambank between some of the functions and even INSIDE a function. The recommended
strategy is to locate local variables and function parameters in mapped RAM or bank 0.

Mapped/unbanked RAM is selected by:

#pragm ranbank —

The bank type modifier
It is also possible to use the bank type modifier to select the RAM bank.

bankO. . bank31, shrBank : can replace #pragma ranbank
/1 shrBank is the mapped/ unbanked | ocations, if avail able

bankl char tx[3]; // tx[] is located in bank 1
The bank type modifier defines the RAM bank to locate the variable. It can locate global variables,
function parameters and local variables. The bank type modifier applies to the variable itself, but not to
the data accessed. This difference is important for pointers.

NOTE 1: The bank type modifier has higher priority than #pragma rambank.

NOTE 2: Using 'extern' makes it possible to state the variable definition several times. However, the first
definition defines the rambank, and later definitions must use the same bank.

NOTE 3: When defining a function prototype, this will normally not locate the function parameters.
However, when adding a bank type modifier to a function parameter in a prototype, this will define the
bank to be used for this variable.

If variables are located in non-existing RAM banks for a device, these variables are mapped into existing
RAM banks (bank 0). This applies to the bank type modifiers and the #pragma rambank statement.

Using RAM banks requires some planning. The optimal placement requires the least code to update the
bank selection bits. Some advice when locating variables:

1. Tryto locate variables which are close related to each other in the same bank.
2. Tryto locate all variables accessed in the same function in the same bank.

25

CC5X C Compiler B Knudsen Data

3. Switching between bank 0 and 3, or bank 1 and 2 require more instructions than the other
combinations. Note that this does not apply to the Enhanced 14 bit core.

4. Use as few banks as possible. Fill bank 0 first, then bank 1, etc.

5. Remember that local variables and function parameters also may require updating of the bank
selection bits.

RAM bank selection bits

RAM and special purpose registers can be located in up to 4 banks. The 12 bit core uses bit 5 and 6 in
FSR to select the right bank. In the 14 bit core, RPO and RP1 in the STATUS register are used for this
purpose. The enhanced 14 bit core uses the BSR register.

The bank selection bits are automatically checked and updated by the compiler, and attempts to set or
clear these bits in the source code are removed by the compiler. This feature can be switched off, which
means that correct updating has to be done in the source code.

The compiler uses global optimizing techniques to minimize the extra code needed to update the bank
selection bits. Removing all unnecessary updating is difficult. However, there should be few redundant
instructions.

The compiler inserts the following instructions:

BCF/ BSF 04h, FSR 5 /1 12 bit core
BCF/ BSF 04h, FSR 6 /1 12 bit core

CLRF FSR // 12 bit core
BCF/ BSF 03h, RPO /] 14 bit core
BCF/ BSF 03h, RP1 // 14 bit core
MOVLB k /1 14 bit enhanced core

NOTE: The compiler REMOVES all bank updating done by the user. However, it is possible to switch to
manual updating with the -b command line option, or locally by a pragma statement.

Manual bank bit update regions
The automatic updating can be switched off locally. This is done by pragma statements:

#pragm update_ FSR 0 /* OFF, 12 bit core only */
#pragm update FSR 1 /* ON, 12 bit core only */

#pragma update RP O /* OFF, 14 bit core (also enhanced core) */
#pragm update RP 1 /* ON, 14 bit core (al so enhanced core) */

#pragma updateBank 0 /* OFF, all cores */
#pragm updat eBank 1 /* ON, all cores */

These statements can be inserted anywhere, but they should surround the smallest possible region. Please
check the generated assembly code to ensure that the desired result is achieved. Another use of #pragma
updateBank is to instruct the bank update algorithm to do certain selections. Refer to Section #pragma
updateBank on page 57 for more details.

NOTE: The safest coding is to not assume any specific contents of the bank selection bits when a local
update region is started. The compiler uses complex rules to update the bank selection bits outside the
local regions. Also, all updating inside a local update region is traced to enable optimal updating when the
local update region ends.

26

CC5X C Compiler B Knudsen Data

2.4 Pointers

Single level pointers are implemented. Note that pointer arithmetic is limited to 8 bit. Assignment is
allowed for 8, 16, 24 and 32 bit.

char t[10], *p;

p = &[1];
*p = 100;
p[2] ++;

Pointer models

Using 8 bit pointers when possible saves both code and RAM space. CC5X allows the size of all single
pointers to be decided automatically. However, pointers in structures and arrays have to be decided in
advance, by using the memory model command line options or a size type modifier. Note that the
operator ‘sizeof(pointer)’ will lock the size according to the chosen default model. Using sizeof(pointer)
is normally not required and should be avoided.

Default pointer sizes are used only when the pointer size is not chosen dynamically. The priority when
deciding the pointer size is:

1) Pointer size type modifiers

2) Automatically chosen pointer size (single pointers)

3) Pointer size chosen according to the default model

Command line options:
-mcl : default ‘const’ pointer size is 1 byte (8 bits)
-mc2 : default ‘const' pointer size is 2 bytes (16 bits)
-mrl : default RAM pointer size is 1 byte
-mr2 : default RAM pointer size is 2 bytes
-mm1 : default pointer size is 1 byte (all pointer types)
-mm?2 : default pointer size is 2 bytes (all pointer types)

Pointer size type modifiers:
e sizel: pointer size is 1 byte (8 bits)
e size2: pointer size is 2 bytes (16 bits)

bankl size2 float *pf;
Certain pointer operation will generate warnings. The warnings can be removed by adding a proper type

cast. The first warning can be disabled by command line option -wx. The other two warnings be disabled
by command line option -wz.

/1 Suspici ous pointer conversion - different sign used
/1 1nconpatible pointer conversion - different size/type used
/1 Nonportable pointer conversion - not a pointer or address

The supported pointer types are:

a) 8 hit pointer to RAM. The compiler will automatically update the MSB bits (FSROH or IRP) if
required (when RAM space exceeds 256 bytes).

b) 16 bit pointer to RAM. This format is required only when the same pointer has to access locations in
different 256 byte RAM segments.

c) 8 bit pointer to program memory. This pointer can access up to 256 bytes of data.

d) 16 bit pointer to program memory. This pointer can access more than 256 bytes of data.

e) 8 bit pointer to RAM or program memory. This pointer can access up to 128 bytes of data and 128
bytes RAM. Bit 7 is used to detect RAM or program memory access. The compiler will only choose
this format if all RAM addresses loaded to the pointer is in the same bank (14 bit core).

27

CC5X C Compiler B Knudsen Data

f) 16 bit pointer to RAM or program memory. Bit 15 is used to detect RAM or program memory
access.

The 12 bit Core

Indirect RAM access on the 12 bit core (16F57/P1C10) requires some care because the RAM bank
selection bits resides in the FSR register (bit 5,6). The compiler can do most of the checking and generate
error messages if required. Automatic bank bit updating can be switched off globally (-b command line
option), or locally (#pragma update_FSR 0). Most of the checking described is performed only if the
automatic bank bit updating in ON.

Reading and writing arrays is straight forward:
bank2 char a, e, t[3], s[3];

a =tJ[i
s[i] =

1;
e;
s[i+3] =

€,

The last three statements requires that variable e is located in mapped RAM (below 0x10) or in the same
bank as array s[]. Otherwise an error message is printed to indicate that the compiler cannot update the
bank selection bits.

Pointers may need a #pragma assume statement:

#pragma ranbank 3

char *px, r;

#define LTAB 5

char tab[LTAB];

#pragm assume *px in ranmbank 3

px = & ab[0];

*px = r;

if (++px == &t ab[LTAB])
px = & ab[0];

A pointer may access more than one bank. The #pragma assume statement should NOT be used in such
cases. The only difference is that the compiler will know the contents of the FSR.5,6 when a variable in a
specific bank is accessed. Therefore, a statement like:

*poi nter_to_any ranmbank = e;
requires that e in located in mapped RAM (address less than 0x10).

Note that the #pragma assume statement works for single pointers (and pointers in arrays), but not for
pointers located in structures.

Arrays are often more efficient than pointers:
i =0;
..
tab[i] =r;
if (++i == LTAB)
i = 0;

Direct use of INDF and FSR is also possible:

28

CC5X C Compiler B Knudsen Data

FSR = px;
INDF = i;

Variable i have to reside in mapped RAM. The compiler performs the checking when INDF is accessed.
The compiler does not try to trace the contents of FSR when it is loaded directly. Therefore, a statement
like *px = r; is normally preferred.

Using #pragma assume *px in rambank 3 also makes loading of px more restrictive. An error message is
printed if px is loaded with an address in another bank. The following cases are checked:

px = tab; /1 sane as &t ab[0]

px = & ab[0];

px = & ab[i];

pXx = pXX; /1l pxx is another pointer
px = &pxx[i];

A statement like px = &tab[i]; may fool the compiler if the value of i is too large.

If the above syntax is too restrictive, then a local update region is the solution. All bank updating then
have to be done with C statements. Normally, local update regions require inspection of the generated
assembly file to avoid problems.

/* these statenents clears the buffer */
i = LTAB;
#pragm update FSR 0 /* OFF */
FSR = &t ab[0];
do {
| NDF = O;
FSR ++;
} while (--i > 0);
#pragm update FSR 1 /* ON */

Without a local update region:

i = LTAB;
do

tab[i-1] = O;
while (--i > 0);

In this example, the local update region only has a speed advantage. The same amount of instructions is
generated. Note that although no bank updating is required inside the above local region, the compiler
does not know the contents of FSR.5,6 at the end of the region, and will therefore update these bits
afterwards.

The 14 bit core: the IRP bit

Some 14 bit core devices contain more than 2 banks. This means that register bit IRP have to be updated
in user code when working with arrays and tables. Note that Enhanced 14 bit core devices does not use
the IRP bit, but have 16 bit indirect registers.

#pragma ranbank 2
char array[50];
char x;

FSR
| RP

&array % 256 + X; /1 LSB of &array]x]
&array /| 256; /1 NSB

29

CC5X C Compiler B Knudsen Data

NOTE: IRP is not updated by the compiler if INDF is used directly in the user code. Using array[x]
instead of INDF enables automatic updating of the IRP bit.

The compiler will trace all loading of pointers to decide how the IRP bit should be updated. This applies
to both 8 and 16 bit pointers.

It is also possible to use #pragma assume to state the bank directly:

bankl char t[3];

bank3 char i, *pi, *pit;

#pragm assume *pi in ranmbank 3 /1 or ranbank 2
#pragm assunme *pit in ranbank 1 // or ranbank O

p| = & ;

pit = &[2];
An error message is printed if a pointer is loaded with an address from the wrong RAM half. Note that
bank 0 and 1 are grouped together (the lower RAM half, 0 - OxFF). Bank 2 and 3 are the upper RAM half
(0x100 - OX1FF).

Updating of IRP can be switched off locally. The compiler does not remove superfluous updating of the
IRP register. This means that IRP is updated for each pointer or table access.

An efficient strategy may be to locate (most of) the tables in upper or lower RAM (above or below
address 0x100), and do all updating of IRP in the user code. Few updates are sometimes sufficient.

#pragma update IRP O /* off */
ii?P = 1; // updated by user code
#bragma update IRP 1 /* on */

2.5 Const Data Support

CC5X supports constant data stored in program memory. The C keyword 'const’ tells the compiler that
these data do not change. Examples:

const char *ps "Hello world!'";

const intl16 itx[] ={ -10, 2 — 100, 1.34 * 1000 };
const float ftx[] = { 1.0, 33.34, 1.3e-10 };

t = *ps;

ps = "";

fx = ftx[i];

The implementation of constant data supports the following features:

» both 8 and 16 bit pointers to const data in the same application

» the size of single const pointers can be chosen automatically

e const pointers can access both RAM and program memory

« the compiler will not put all constant data in a single table, but rather make smaller tables if this
saves code space

» some devices support 14 bits data (PIC16F87X). The compiler will automatically choose this format
if space can be saved. This allows compact storage of 7 bit ASCII strings.

» duplicate strings and other data are automatically merged to save space

30

CC5X C Compiler B Knudsen Data

Recommendations:

It is recommended to use small data tables and structures. This allows the compiler to merge equal data
items and build optimal blocks of constant data.

Limitations:

1) The compiler will not initialize RAM variables on startup
2) Data items of 16 bits or more in structures with more than 256 bytes of data must be aligned

Storing 14 bit data

Most 14 bit core devices support 14 bits data stored in program memory. This allows compact storage of
7 bit ASCII strings and 14 bits data. The code sequence required for accessing these bits is longer than
the code for a return table. This means that code is saved when the amount of data exceeds 40-50 bytes.
The compiler will automatically choose the optimal storage format.

When a constant table contains less than 256 byte of data, there will be a tradeoff between speed and size.
Using a return table executes faster but requires more code when the table contains more than 40-50 bytes
of data. If speed is required, the following pragma statement defines a new limit for size optimization.

#pragm wi deConst Data 200 // return table limt
. It is also possible to disable 14 bit data storage:

#pragm wi deConst Data 8192 // always use a const return table

Data of size 16 bits or more

The compiler allows access of 8, 16, 24 and 32 bit data, including fixed and floating point formats. When
using arrays or structures with more than 256 bytes of data, single data items have to be aligned.
Alignment means that there should not be any remainder when dividing the offset by the size of the data
item. This is only a problem when defining structures containing data of different sizes.

{ 10000, -10000, O, 30000, -1 };
{ 1000000, OxFFFFFF, 9000000 };
{ 1000000000, Ox7FFFFFFF

- 900000000 };
const fixed8 8 tf[] ={ -1.1, 200.25, -100.25 };
const float tp[] ={ -1.1, 200.25, 23e20 };
const double td[] = { -1.1, 200.25, 23e-30};
const floatl16 ts[] = { -1.1, 200.25, 23e-30};

const long tI[5]
const uns24 th[]
const int32 ti[]

i
d

tI[i]; [/ reading a long integer
td[x]; // reading a double float constant

Code pages

When using devices with more than one codepage, the compiler will automatically calculate the optimal
codepage for the data. The disadvantage is that the compiler will not know when a codepage is full, so the
functions still have to be moved manually between codepages to find allowed and optimal combinations.
Also, const data can be located on a specific codepage by using a page type modifier.

const pagel char tx[] = "Hello!";

The compiler will group the const data (including strings) into "storage classes" depending on data types,
optimization and how they are accessed.

31

CC5X C Compiler B Knudsen Data

Data belonging to the same storage class are accessed by the same _constX access function generated by
the compiler.

The general rule is that all const data accessed by the same pointer belongs to the same storage class.

It is sufficient to use a page type modifier on one of the const data items in a storage class, then all data
belonging to that storage class will be stored on that codepage. This can be used to split large amount of
const data into separate codepages.

Strings are sometimes harder to force into specific codepages. However, since equal strings are merged
together by the compiler it is possible to define an unused data item with a known string used somewhere
else to force a specific group of strings to a specific codepage. The unused string will not consume any
code space. Example:

const page2 char unusedString[] = "Tenperature:";

Locating Const Data

The compiler will normally insert ‘const’ data at the start of each codepage (after the interrupt routine).
The following pragma statement will allow 'const' data for the current codepage to be inserted between
user functions, or at a specific address when using #pragma origin first. The current codepage can also be
set by using #pragma codepage.

#pragma i nsert Const

Merging data
The compiler will automatically merge equal strings and sub-strings, and also other data items. Using

small tables will increase the chance of finding data items that can be merged. Note that data containing
initialized addresses (ROM and RAM) are not merged. Examples:

1. The string "world!" is identical to the last part of the string "Hello world!". It is therefore not required
to use additional storage for the first string. The compiler handles the address calculations so that
merged (or overlapping) strings are handled fully automatically. Note that the string termination "\0'
also has to be equal, otherwise merging is not possible. For example, the string "world™" cannot be
merged with the above strings.

2. Merging applies to all kinds of data. Data is compared byte by byte. This allows the first two of the
following tables to be merged with the last one.

const char alf]
const char a2[]
const char a3[]

{ 10, 20, 30 };
"ab";
{5 10, 20, 30, 'a', 'b', 0};

Examples
A table of pointers to strings:

const struct ({
const char *s;

}otb[] = {
"Hell o world",
"Monday",

"WE)I’|d" /1 automatically merged with first string

s

p =tb[i].s; [// const char *p; char i;

32

CC5X C Compiler B Knudsen Data

t
t

*p++; /1 char t;
p[x] ; /1 char x;

Note that ‘const struct' is required to put the pointer array in program memory. Using ‘const char *tx[];'
means that the strings reside in program memory, but the table 'tx[]' resides in RAM.

String parameters:

nmyfunc(“Hello”); [// void nyfunc(const char *str);
myfunc(& ab[i]); // char tab[20]; // string in RAM
nmyfunc(ctab); // const char ctab[] = “A string”;

Const data stored in dedicated functions

The data type DatalnW allows integer data that fits within an instruction word (12/14 bit) to be stored in
const data tables that are mapped to dedicated functions containing data elements only (no code or
return). Note that it is not possible to use DatalnW outside the const table.

It is possible to read and assign the address of the const table, but without any operations. All access of
data within this type of tables must be done by an application access function. It is not possible to use a
table index read (dataTable[i]), fixed offset (dataTable[5]) or pointers.

const DatalnWdataTable[] = {

1234,
3456,
Ox3FFF, // 14 bit core: nmax 14 bit (12 bit for 12 bit core)
Ol
1
uns8 get Data(unsl6 ix)
{
unsl6 base = (unsl6) dataTable; // get the table start address
base += i x;
/1 NOTE: register names and access procedure are devi ce dependent
NVVADRL = base; /1 LSB of address
NVMADRH = base >> 8; /1 NMSB of address
NVVREGS = 0; // Do not select Configuration Space
RD = 1; /1 Initiate read
return NVMDATL; // read LSB
}
uns16 ix16;

uns8 x = getData(ix16);

uns8 y = NVMDATH, // read MSB

33

CC5X C Compiler

B Knudsen Data

3 SYNTAX

3.1 Statements

C statements are separated by semicolons and surrounded by block delimiters:

{ <statenent>; .. <statenent>;

The typical statements are:

[/ if, while, for, do, swtch,
/1 return, goto, <assignhnment>,

while (1) {
k = 3;
X
if (PORTA == 0) {

for (i =0; i < 10; i++)

pin_1 = 0;

do {
a = sanple();
a=rr(a);
s += a;

}
while (s < 200);

}
reg -= 1,

}

if (PORTA == 4)
return 5;

else if (count == 3)
goto X;

i f (PORTB. 3)
br eak;

}

if statement
if (<condition>)
<st at enent >;
else if (<condition>)
<st at enent >;
el se
<st at enent >;

The else if and else parts are optional.

while statement

whi I e (<condition>)
<st at enent >;

while (1) { .. } /1 infinite | oop

for statement

for (<initialization>; <condition>;

<st at enent >;

conti nue,
<function call>

<i ncrenent >)

34

CC5X C Compiler B Knudsen Data

initialization: legal assignment or empty
condition: legal condition or empty
increment: legal increment or assignment or empty

for (v =0; v <10; v++) { .. }
for (; v <10; v++) { .. }
for (v =0; ; v--) {

..}
for (i=0; i<5; a.b[x]+=2) { .. }

do statement

do
<st at enent >;
whi l e (<condition>);

switch statement

The switch statement supports variables up to 32 bits. The generated code is more compact and executes
faster than the equivalent 'if - else if' chain.

switch (<variable>) {
case <constant 1>:
<statenent>;, .. <statenent>;
br eak;
case <const ant 2>:
<statement>; .. <statenent>;
br eak;

defaul t:
<statenment>; .. <statenent>;
br eak;

}

<variable>: all 8-32 bit integer variables including W
break: optional
default: optional, can be put in the middle of the switch statement

switch (token) {
case 2:
i += 2;
br eak;

case 9:
case 1:
defaul t:
i f (PORTA == 0x22)
br eak;

case 'P':
pinl =0; i -= 2
br eak;

}

break statement

The “break;” statement is used inside loop statements (for, while, do) to terminate the loop. It is also used
in switch statements.

35

CC5X C Compiler B Knudsen Data

while (1) {
|f (var == 5)
br eak;
}

continue statement
The “continue;’ statement is used inside loop statements (for, while, do) to force the next iteration of the
loop to be executed, skipping any code in between. In while and do-while loops, the loop condition is
executed next. In for loops, the increment is processed before the loop condition.

for (i =0; i <10; i++) {

it (i == 7)
conti nue;

}

return statement
return <expression>; /* exits the current function */

return; /* no return val ue */
return i+1l; /* return value */

goto statement
got o <l abel >;

Jumps to a location, forward or backward.
goto XYZ;
XYZ:

3.2 Assignment and Conditions
Basic assignment examples:

i = x - 100;

y =AY Iy =y""A;

W | = 0x10; /1 W= W] 0x10;

a=b=c+ 1, // multiple assignment

/! operations: + - & | N * [% << >>

flag = 1; // set bit variable

i++ [*or*/ ++i; [*or*/ i
i--; [*or*/ --i; [*or*/ i

Special syntax examples

#define nx 'a
if (!nmx)

36

CC5X C Compiler B Knudsen Data

W= W- 3; // ADDLW 256-3

b =1fx() - 3;

/1l Post- and pre-increnenting of pointers
char *cp

t = *--cp;

t |= *++cp

*cp-- = t;

t = *cp++ + 10;

/1l pre-increnmenting of variables
t = ++b | 3;

sum --b, 10);

t = tab[--b];

Conditions

[++ | --] <variabl e> <cond-oper> <val ue>
[& condition]
[|] condition]

cond- oper : == = > >= < <=

if (x ==7) ..

if (Carry ==1 && al < a2) ..
if (y >44 || Carry || x!1=2)
if (--index > 0)

if (bx ==1 || ++i < max)

if (sub_1() '= 0)

Bit variables

bit a, b, ¢, d;
char i, j, k;

bit bitfun(void) // bit return type (using Carry bit)
{

return O; /1 Clear Carry, return
return 1; /1l Set Carry, return
nop() ;
return Carry; // return
return b; /1 Carry=b; return
return li;
return b & PORTA. 3;

}

b = bitfun2(bitfun(), 1);
if (bitfun())

if ('bitfun()) ..

if (bitfun() == 0)
I'charfun();

charfun() > 0;
Ibitfun();

Carry = bitfun();

b & bitfun();

T OTOT
I

37

CC5X C Compiler B Knudsen Data

if (bitfun() == b) ..
if (bitfun() == PORTA 1)

i += b; // conditional increment

i -= b; /! conditional decrenent

i = k+Carry;

i = k-Carry;

b =1!b; // Toggle bit (or b=b==0;)
b =1c; // assign inverted bit

PORTA. 0 = ! Carry;
a &= PORTA. 0;
PORTA. 1 | = a;
PORTA. 2 &= a;

/ assign condition using 8 bit char variables
Li;

'w

j == :

k 1= 0;

/
b
b
b
b
b i > 0;

/1 assign bit conditions
b =c&d; //also &&, |, ||, +, ~, == != < > >z <=

/1 conditions using bit variables
if (b==c) .. /] also != > < >= <=

// initialized local bit variables
bit bx = ¢cx == "+";
bit by = fx() != OxFF;

Multiplication, division and modulo
mul tiplication : alé = bl6é * c16; // 16 * 16 bit

A general multiplication algorithm is implemented, allowing most combinations of variable sizes.
Including a math library allows library calls to be generated instead of inline code. The algorithm
makes shortcuts when possible, for instance when multiplying by 2. This is treated as a left shift.

di vi si on : alé bl6 / c8; /1 16 /| 8 bit

nodul o : a32 b32 %cl6; // 32 %16 bit

The division algorithm also allows most combinations of variable sizes. Shortcuts are made when
dividing by 2 (or 2*2*..). These are treated as right shifts.

Precedence of C operators

H ghest: ()

++ --

* %

+ -

<< >>

< <= > >=

|
Lowest : = 4= -= *= |[= etc.

38

CC5X C Compiler

B Knudsen Data

Mixed variable sizes are allowed

a32
alé

(uns32) b24 * c8; [//
alé + bS§;

I

24 * 8 bit,
16 + 8 bit,

result 32 bit
result 16 bit

Most combinations of variables are allowed; the compiler performs sign extension as required. Multiple
operations in the same expression are allowed when using 8 bit variables.
a8 = b8 + ¢c8 + d8 + 10;

3.3 Constants

X = 34; [* deciml */

X = 0x22; /* hexadeci mal */

X = "A; /* ASCI| */

X = 0b010101; /* binary */

X = 0x1234 / 256; [* 0x12 : MSB */

X = 0x1234 % 256; [* 0x34 : LSB */

X = 33 % 4; [* 1 */

x = OxF & OxF3; /* 3 */

X = 0x2 | 0x8; /* 10 */

X = 0x2 ™ OxF; /* 0bl1101 */

X = 0b10 << 2; [* 8 */

X =rl1l+(3* 8- 2); [* 22 */
X =rl+ (3 + 99 + 67 - 2); [* 167 */
x = ((OxF & OxF3) + 1) * 4; [* 16 */

Please note that parentheses are required in some cases.

Constant expressions

The size of integers is by default 8 bits for this compiler (other C compilers typically use 16 or 32 bits
depending on the CPU capabilities). An error is printed if the constant expression loses significant bits

because of value range limitations.

char a;
a

SR G Y

(10 * 100) / 256;
(10L * 100) / 256;
((uns16) 10 * 100)
(uns16) (10 * 100)
(10 * 200) / 256;

/1 no error,

/1 an error is printed
/1 no error

/ 256; // no error

/ 256; // error again

Adding an L means conversion to long (16 bit).

The command line option -cu forces 32 bit evaluation of constants so that no significant bits are lost.

Some new built in types can also be used:

TYPE

int8 :
i nt 16:
i nt 24:
i nt 32:
uns8 :
uns16:
uns24:
uns32:

8
16
24
32

16
24
32

bi t
bi t
bi t
bi t
bi t
bi t
bi t
bi t

si gned
si gned
si gned
si gned
unsi gned
unsi gned
unsi gned
unsi gned

Sl ZE

AP WONEFEPRAWNPE

M N

-128

- 32768

- 8388608

- 2147483648
0

0
0
0

200 is a long int

MAX

127

32767
8388607
2147483647
255

65535
16777215
4294967295

39

CC5X C Compiler B Knudsen Data

The constant type is by default the shortest signed integer. Adding a U behind a constant means that it is
treated as unsigned. Note that constants above Ox7FFFFFFF are unsigned by default (with or without a U
behind).

Enumeration

An enumeration is a set of named integer constants. It can often replace a number of #define statements.
The numbering starts with 0, but this can be changed:

enum { Al, A2, A3, A4 };

typedef enum{ alfa = 8, beta, zeta = -4, eps, } ENI;

ENL1 nn;

enum con { Read_A, Read B };

enum con mm

mm = Read_A;

nn eps;

3.4 Functions

Function definitions can appear as follows:
voi d subroutine2(char p) { /* C statenents */}
bit functionl(void) { }
l ong function2(char W { }
void mai n(void) { }

Function calls:
subroutinel();
subrouti ne2(24);
bitX = functionl();
X function2(W;

y fx1(fx3(x));

The compiler needs to know the definition of a function before it is called to enable type checking. A
prototype is a function definition without statements. Prototypes are useful when the function is called
before it is defined. The parameter name is optional in prototypes:

char function3(char);

voi d subroutinel(void);

Function return values

Functions can return values up to 4 bytes wide. Return values can be assigned to a variable or discarded.
Handling and using return values is automated by the compiler.

The least significant byte is always placed in W when using 14 bit core devices. Signed variables and
variables larger than 8 bits also use temporary variables on the computed stack. The 12 bit core use the W
register when returning 8 bit constants. All other return values are placed in return variables on the
computed stack.

A function can return any value type. The W register is used for an 8 bit return value if possible. The
Carry flag is used for bit return values. The compiler will automatically allocate a temporary variable for
other return types. A function with no return value is of type void.

Parameters in function calls

There is no fixed limit on the number of parameters allowed in function calls. Space for parameters is
allocated in the same way as local variables, which allows efficient reuse. The bit type is also allowed.
Note that if W is used, this has to be the LAST parameter.

char func(char a, unsl6 b, bit ob, char W;

40

CC5X C Compiler B Knudsen Data

Internal functions
The internal functions provide direct access to certain inline code:

btsc(Carry); // void btsc(char); - BTFSC f, b

bt ss(bit2); /1 void btss(char); - BTFSS f, b
clrwdt (); /1 void clrwdt(void); - CLRWADT

cl ear RAM) ; /1 void clearRAMvoid); clears all RAM
f = decsz(f); // char decsz(char); - DECFSZ f,d

W= incsz(f); // char incsz(char); - INCFSZ f,d
nop(); /1 void nop(void); - NOP

nop2(); /1 void nop2(void); - GOTO next address
retint(); /1 void retint(void); - RETFIE

W= rl (f); /1 char rl(char); - RLF f,d

f =rr(f); /1 char rr(char); - RRF f,d

sl eep(); /1 void sleep(void); - SLEEP

skip(i); /1 void skip(char); - conputed goto

f = swap(f); // char swap(char); - SWAPF f,d

Additional internal functions are available for the enhanced core 14:

W= addWFC(f);// char addWFC(char); - ADDWC f,d
f = subWFB(f);// char subWrB(char); - SUBWB f,d
f =1sl(f); /1 char Isl(char); - LSLF f,d
f =1Isr(f); /1 char Isr(char); - LSRF f,d
f = asr(f); /1l char asr(char); - ASRF f,d
softReset(); // void softReset(void); - RESET

The internal rotate functions are also available for the larger variable sizes:

alé
a32

ri(ale); /1 16 bit left rotation
rr(a32); /1 32 bit right rotation

The inline function nop2() is implemented by a GOTO to the next address. Thus, nop2() can replace two
nop() to get more compact code. The main use of nop() and nop2() is to design exact delays in timing
critical parts of the application.

3.5 Type Cast

Constants and variables of different types can be mixed in expressions. The compiler converts them
automatically to the same type according to the stated rules. For example, the expression:

a=>b+ c;

consists of 2 separate operations. The first is the plus operation and the second is the assignment. The
type conversion rules are first applied to b+c. The result of the plus operation and a are treated last.

The CC5X compiler uses 8 bit int size and contains many data types (integers, fixed and floating point).
The type cast rules have been set up to provide best possible compatibility with standard C compilers
(which typically uses 16 or 32 bit int size).

The type conversion rules implemented are:

if one operand is double -> the other is converted to double

if one operand is float -> the other is converted to float

if one operand is 32 bit -> the other is converted to 32 bit

if one operand is 24 bit -> the other is converted to 24 bit

if one operand is long -> the other is converted to long

if one operand is unsigned -> the other is converted to unsigned

oupwdE

41

CC5X C Compiler B Knudsen Data

NOTES:

» Thesign is extended before the operand is converted to unsigned.
» Assignment is also an operation.

* The char type is unsigned

» Constants are SIGNED, except if U is added.

» The bit type is converted to unsigned char.

e The fixed point types are handled as subtypes of float.

Type conversion in C is difficult. The compiler may generate a warning if a type cast is required to make
the intention clear. Remember that assignment (=) is a separate operation. The separate operations are
marked (1:), (2:) and (3:) in the following examples.

unsl1l6 ale6;
uns8 b8, c8;
int8 i8, j8§;

al6 = b8 *c8; /* (1:) In this case both b8 and c8 are 8 bit unsigned, so the type of the multiplication is 8
bit unsigned. (2:) The result is then assigned to a 16 bit unsigned variable, a16. Converting the 8 bit
unsigned result to 16 bit unsigned means clearing the most significant bits of a16. The compiler generates
a warning because significant bits of the multiplication are lost due to the type conversion rules. */

al6 = (unsl6) (b8 * c8); /* (1:) Adding parentheses just isolates the multiplication and the multiplication
result is still 8 bit unsigned. (2:) The (uns16) type cast is not needed because this type cast is done
automatically before the assignment. The compiler generates a warning because significant bits of the
multiplication are lost due to the type conversion rules. */

al6 = (unsl6) b8 * c8; /* (1:) Converting one of the arguments to 16 bit unsigned BEFORE the
multiplication is the right syntax to get a 16 bit result. (2:) The result and the destination al6 now have
the same type for the assignment and no type conversion is needed. */

al6 = (uns8) (b8 * ¢8); /* (1:) The multiplication result is 8 bit unsigned. (2:) The (uns8) type cast tells
the compiler that the result should be 8 bit unsigned, and no warning is generated even though it looks
like significant bits of the multiplication are lost. */

al6 = b8 *200; /* (1:) Constant 200 is a 16 bit signed constant (note that 200U is an 8 bit unsigned
constant, and that 127 is the largest 8 bit signed constant). Argument b8 is therefore automatically
converted to 16 bit. The constant is then converted to unsigned and the result is 16 bit unsigned. (2:) The
result and the destination a16 now have the same type for the assignment and no type conversion is
needed. */

al6 = (int16) i8 * j8; /* (1:) Both arguments are converted to 16 bit signed and the result is 16 bit signed.
(2:) The result is converted to unsigned before the assignment, but this does not mean any real change
when the size is the same (example: -1 and OxFFFF have the same 16 bit representation). */

al6 = (unsl6) (uns8)i8 * (uns8)j8; /* (1:) To get an 8*8 bit unsigned multiplication it is necessary to cast
both arguments to unsigned before extending the size to 16 bit unsigned. Otherwise the sign bit will be
extended and the multiplication will need more code and cycles to execute. (2:) The result and the
destination al6 now have the same type for the assignment and no type conversion is needed. */

al6 = ((uns16) b8 * ¢8) / 3; /* (1:) Converting one of the arguments to 16 bit unsigned before the
multiplication gives a 16 bit result. (2:) Division is the next operation and is using the 16 bit unsigned
multiplication result. Constant 3 is 8 bit signed, and is then automatically converted to 16 bit signed and
further to 16 bit unsigned. The result of the division is 16 bit unsigned. (3:) The division result and the
destination a16 now have the same type for the assignment and no type conversion is needed. */

42

CC5X C Compiler

B Knudsen Data

3.6 Accessing Parts of a Variable
Each bit in a variable can be accessed directly:

uns32 a;

a.7 = 1; /] set bit 7 of variable a to 1

if (a.31 == 0) /1 test bit 31 of variable a
t[i].4 = 0; /1l bit 4 of the i'th el ement

Bit 0: least significant bit

Bit 7: nost significant bit of a 8 bit variable

Bit 15: nost significant bit of a 16 bit variable
Bit 23: nost significant bit of a 24 bit variable
Bit 31:. nost significant bit of a 32 bit variable

Also, parts of a variable can be accessed directly:

unsl6 a;
uns32 b;

a.low8 = 100; // set the least significant 8 bits

a = b.highl6; // load the nost significant

lowd : least significant byte
hi gh8 : nopbst significant byte
m d8 : second byte

m dL8 : second byte

mdH8 : third byte

lowl6 : least significant 16 bit
mdlé : niddle 16 bit

hi ghl6: nost significant 16 bit
low24 : least significant 24 bit
hi gh24: nost significant 24 bit

The table shows which bits are accessed depending on the variable size in bytes (1,2,3,4) and the sub-

index used. The * indicates normal use of the sub-index:

1 2 3
| ow8 0-7 * 0-7 * 07 *
hi ghs 0-7 * 815 * 16-23 *
ni d8 0-7 8-15 * 8-15

m dL8 0-7 8- 15 8-15 *
m dH8 0-7 8- 15 16-23 *
| owl6 0-7 0-15 * 0-15 *
m d16 0-7 0-15 8-23 *
hi ghl6 0-7 0-15 * 8-23 *
| ow24 0-7 0- 15 0-23 *
hi gh24 0-7 0- 15 0-23 *

3.7 C Extensions
CC5X adds some extensions to the standard C syntax:

1. The bit variable type

2. The interrupt function type

43

CC5X C Compiler B Knudsen Data

3. Local variables can be declared between statements as in C++. Standard C requires local variables to
be defined in the beginning of a block.

4. Binary constants : Obxxxxxx or bin(Xxxxxx)
The individual bits can be separated by the ".":
0b0100
Ob. 0. 000. 1. 01. 00000
bi n(0100)
bi n(0001. 0100)

5. Preprocessor statements can be put into macros. Such preprocessor statements are not extended to
multiple lines. The inserted preprocessor statements are evaluated when the macro is expanded, and not
when it is defined.

#defi ne MAX \

{ \
a = 0; \

#if AAA == 0 && BBB == 0 \
b = 0; \

#endi f \

}

6. Several of the type modifiers are not standard in C (page0..page3, bank0..bank3, shrBank, sizel,size2)

More C extensions are allowed by the #pragma statement.

3.8 Predefined Symbols

The basic PICmicro registers are predefined (header files define the rest):
W I NDF, PCL, STATUS, FSR, PORTA, Carry, etc.

The following names are defined as internal functions, and are translated into special instructions or
instruction sequences.

btsc, btss, clearRAM clrwdt, decsz, incsz, nop, nop2, retint, rl,
rr, sleep, skip, swap, addWwFC, subWrB, Isl, |sr, asr, softReset

Extensions to the standard C keywords
bankO, .. bank63, bit, DatalnW fixed8 8, .. fixed24 8, floatl6,
float24, float32, int8, intl6, int24, int32, interrupt, pageo,
pagel5, shrBank, sizel, size2, uns8, unsl6, uns24, uns32

Standard C keywords used

aut o, break, case, char, const, continue, default, double, enum
extern, do, else, float, for, goto, if, inline, int, long, return,
short, signed, sizeof, static, struct, swtch, typedef, union,
unsi gned, void, while,

define, elif, ifdef, ifndef, include, endif, error, pragma, undef

The remaining standard C keywords are detected and compiled. One is ignored (register), and the rest
cause a warning to be printed (volatile, line).

44

CC5X C Compiler B Knudsen Data

The sizeof operator

The operator sizeof() gives the size in bytes of the argument. The argument can be a type name, a variable
name, a pointer, a structure name, an array name, a string literal or a constant. Sizeof can also be used in a
preprosessor statement. Examples: sizeof(char) is 1, sizeof(bit) is 0, sizeof(“abc”) is 4, sizeof(int24) is 3.

Function offsetof(struct_type, struct_member)

Function offsetof() returns the offset to a structure member. The first argument must be a struct type, and
the second a structure member. The function can also be used in a preprocessor expression.
typedef struct sStx {

char a;

unsl16 b;
St x;
of fsetof (Stx, b);
of fsetof (struct sStx, a);
of fsetof (struct_x, nenber_n.sub2.q[3]);

X X X

Automatically defined macros and symbols

The following symbols are automatically defined when using the CC5X compiler, and can be used in
preprocessor macros:

__CodePages := 1..16 : depending on the nunber of code pages
on the actual chip

__CC5X__ := Integer version nunber: 3200 neans version 3.2,
3202 means version 3.2B
* first 2 digits : nmain version
* last 2 digits : minor release (01="A", 02="B, etc.)

__CoreSet _ := 1200 : 12 bit core
1400 : 14 bit core
1410 : 14 bit enhanced core
_IRP.SFR__:=1 if IRP is active when accessing
special function registers using I NDF, O
otherwi se. Note that '#pragma update |RP 0
will set this macro to 0 until
' #pragma update IRP 1' is processed.
_IRPRAM _:=1if IRP is active when accessi ng RAM
regi sters using INDF, 0 otherw se. Using
"#pragma update IRP 0" will set this macro
to O until '#pragma update IRP 1'.
_16CXX ;=1 : always defined (12 and 14 bit cores)
_16C5X ;=1 : when the 12 bit core is selected
__EnhancedCorel4 _ := 1 : when the Enhanced Core 14 is sel ected
__EnhancedCorel2 := 1 : when the Enhanced Core 12 is sel ected
_16C54 := 1 : when the 16C54 is selected, simlar for al

ot her devi ces

45

CC5X C Compiler B Knudsen Data

Macros __ FILE___and __ LINE_

Macro _ FILE__is replaced by the name (string literal) of the current source file. Macro __ LINE__is
replaced by the current line number (decimal constant) of the source file being compiled.

Macros _ DATE__and _ TIME__
Macros for date and time are defined when compilation starts.

Macr o For nat Exanpl e
__TIME__ HOUR M N: SEC "23:59: 59"
__DATE__ MONTH DAY YEAR "Jan 1 2005"

_ DATE2__ DAY MONTH YEAR " 1 Jan 2005"

3.9 Upward Compatibility

The aim is to provide best possible upward compatibility from version to version. Sometimes the
generated code is improved. If the application programs contain critical timing parts (depending on an
exact instruction count), then these parts should be verified again, for example by using the MSDOS
program fc (file compare) on the generated assembly files.

Evaluation of constant expression is slightly changed from version 2.x in order to adapt to standard C. An
error message is printed if significant bits are lost. The cure is to use type conversion.

a = (unsl16) 10 * 100;

Alternatively will the command line option -cu force 32 bit evaluation of constant expressions. The
option -wS changes the error message to a warning.

46

CC5X C Compiler B Knudsen Data

4 PREPROCESSOR DIRECTIVES

The preprocessor recognizes the following keywords:

#defi ne, #undef, #incl ude
#if, #ifdef, #ifndef, #elif, #else, #endif
#error, #pragna

A preprocessor line can be extended by putting a \' at the end of the line. This requires that there are no
space characters after the '\'.

#define
#define counter vl
#define MAX 145
#define echo(x) v2 = X
#define mx() echo(1) /* nested macro */

Note that all #define's are global, even if they are put inside a function.

Preprocessor directives can be put into the #define statement.

Macro concatenation
The concatenation operator ## allows tokens to be merged while expanding macros. Examples:

#def i ne CONCAT(NAME) NAMVE ## _conmand()

CONCAT(qui t) => qui t _conmand()

CONCAT() => _conmmand()
CONCAT(dumy(); hel p); => dunmy(); hel p_command()
#def i ne CONCAT2(N1, N2) N1 ## _comm ## N2()

CONCAT2(hel p, and) => hel p_command()

#def i ne CONCAT3(NBR) Ox ## NBR

CONCAT3(0f) ; => 0xOf

#def i ne CONCAT4(TKN) TKN ## =

CONCAT4(+) => +=

#define nrg(s) s ## _nsg(s)
#define xnrg(s) nrg(s)

#def i ne foo alt

nT g(f 00) => foo_nsg(alt)
xnr g(f o0) => alt_nsg(alt)
#define | LLEGALL() ## _command

#define | LLEGAL2() _conmand ##

Macro stringification
The stringification operator # allows a macro argument to be converted into a string constant. Examples:

#define STRING 1(ARG) #ARG

STRI NG 1(hel p) => "hel p"
STRING 1(p="foo\n";) => "p=\"foo\\n\";"

47

CC5X C Compiler B Knudsen Data

#define STRING 2(Al, A2) #Al " " #A2
STRI NG 2(x, y) => "x" " " "y" (equivalent to "x y")

#define str(s) #s
#define xstr(s) str(s)

#def i ne foo 4
str(foo) => "foo"
xstr(foo) => "4"

#defi ne WARN | F(EXP) \
do { if (EXP) \
war n("Warning: " #EXP "\n"); } \

while (0)

WARN_I| F (x==0); =>do { if (x==0)
warn("Warning: " "x==0" "\n"); } while (0);
#include

#i ncl ude "test.h"
#i ncl ude <test. h>

#include's can be nested. When using #include "test.h" the current directory is first searched. If the file is
not found there, then the library directories are searched, in the same order as supplied in the command
line option list (-1<dir>). The current directory is skipped when using #include <test.h>.

Macros can be used in #include files. The following examples show the possibilities. Note that this is not
standard C.

#i nclude "filel™ ".h"
#define MACL "c:\project\"
#i ncl ude MACL "fil e2. h"
#define MAC2 MNMAC1 ".h"

#i ncl ude MAC2

#defi ne MAC3 <fil e3. h>

#i ncl ude MAC3

Rules for macros in #include:

1. Strings using " can be split, but not strings using <>
2. Only the first partial string can be a macro
3. Nested macros are possible
4. Only one macro at each level is possible
#undef
#define MAX 145

#imdef MAX /* renpoves definition of MAX */

#undef does the opposite of #define. The #undef statement will not produce any error message if the
symbol is not defined.

#if
#if defined ALFA && ALFA ==

48

CC5X C Compiler B Knudsen Data

/* statenents conpiled if ALFA is equal to 1 */
/* conditional conpilation may be nested */
#endi f

An arbitrary complex constant expression can be supplied. The expression is evaluated the same way as a
normal C conditional statement is processed. However, every constant is converted to a 32 bit signed
constant first.

1) macros are autonmatically expanded
2) defined(SYMBOL) and defined SYMBOL are replaced by 1 if the synbol
i s defined, otherw se O.
3) legal constants : 1234 -1 'a' "\\'
4) legal operations : + - * [%>> <<
::!:<<:>>:||&&

-0

#ifdef
#i f def SYMBOL

/* Statenents conpiled if SYMBOL is defined
Condi tional conpilation can be nested. SYMBOL
shoul d not be a variable or a function nane. */
#endi f

#ifndef

#i f ndef SYMBOL
/* statenents conpiled if SYMBOL is not defined */
#endi f

#elif
#i fdef AX
#elif defined BX || defined CX
/* statenents conpiled if AX is not
defined, and BX or CX is defined */
#endi f
#else

#i f def SYMBCL

#el se
/* statenents conpiled if SYMBOL is not defined */
#endi f

#endif

#i f def SYMBOL

#endif /* end of conditional statenents */
t#error

#error This is a custom defined error nessage

The compiler generates an error message using the text found behind #error.

49

CC5X C Compiler B Knudsen Data

#warning
#warning This is a warning

The following output is produced. Note that this directive is not standard C.
Warning test.c 7: This is a warning

#message
#message This is nmessage 1

The following output is produced. Note that this directive is not standard C.
Message: This is nessage 1

4.1 The pragma Statement
The pragma statement is used for processor specific implementations.

#pragma alignLsbOrigin <a> [to]

This pragma statement allows the origin to be aligned. The compiler will check if the least significant
byte of the origin address is equal to <a>, or alternatively within the range <a> to . If this is not true,
the origin is incremented until the condition becomes true. Both <a> and may range from -255 to
255.

#pragma al i gnLsbOrigin O

#pragma alignLsbOrigin 2 to 100

#pragma alignLsbOrigin 0 to 190 /1 [-255 .. 255]

#pragma al i gnLsbOrigin -100 to 10
Such alignment is useful to make sure that a computed goto does not cross a 256 word address boundary.
More details are found in Section Origin alignment on page 114 in Chapter 9.2 Computed Goto. This type
of alignment does not apply to the 12 bit core.

#pragma asm2var 1
Enable equ to variable transformation. This is defined in Chapter 6.6 Inline Assembly on page 79.

#pragma assert [/] <type> <text field>

Assert statements allow messages to be passed to the simulator, emulator, etc. Refer to Chapter 7.3 Assert
Statements on page 105 for details.

#pragma assume *<pointer> in rambank <n>

The #pragma assume statement tells the compiler that a pointer operates in a limited address range. Refer
to Chapter 2.4 Pointers on page 27 for details.

#pragma bit <name> @ <N.B or variable[.B]>

Defines the global bit variable <name>. It is useful for assigning a bit variable to a certain address. Only
valid addresses are allowed:

#pragma bit bitxx @ 0x20.7

#pragma bit ready @ STATUS. 7

#pragma bit ready @ PA2

NOTE: If the compiler detects double assignments to the same RAM location, this will cause a warning

to be printed. The warning can be avoided if the second assignment uses the variable name from the first
assignment instead of the address (#pragma bit var2 @ varl).

50

CC5X C Compiler B Knudsen Data

#pragma cdata]ADDRESS] = <VXS>, .., <VXS>

The cdata statement can store 14 bit data in program memory at fixed addresses. It can also be used to
store data in EEPROM memory. Refer to Chapter 6.9 The cdata Statement on page 100 for details.

#pragm cdat a[ADDRESS] = <VXS>, .., <VXS>
#pragm cdat a[] = <VXS>, .., <VXS>
#pragma cdat a. | DENTI FI ER = <VXS>, .., <VXS>

ADDRESS: 0 .. Ox7FFE
VXS : < VALUE | EXPRESSION | STRI NG
VALUE: 0 .. Ox3FFF
EXPRESSI ON: any valid C constant expression,
i.e. 0x1000 | (3*1234)
STRING "Valid C String\r\n\0\x24\x8\ xe\ xFF\ xffi\\""

#pragma char <name> @ <constant or variable>

Defines the global variable <name>. The statement is useful for assigning a variable to a certain address.
Only valid addresses are allowed:

#pragma char i @ 0x20
#pragma char PORTX @ PORTC

NOTE: If the compiler detects double assignments to the same RAM location, this will cause a warning
to be printed. The warning can be avoided if the second assignment uses the variable name from the first
assignment instead of the address (#pragma char var2 @ varl).

#pragma chip [=] <device>

Defines the chip type. This allows the compiler to select the right boundaries for code and memory size,
variable names, etc. Note that the chip type can also be defined as a command line option.

#pragma chip Pl C16C55

This statement has to precede any normal C statements, but some preprocessor statements, like #if and
#define, can be compiled first.

The supported devices are either known internally (16C54,55,56,57,58, 61,64,65, 71,73,74, 84,
620,621,622) or defined in a PICmicro header file (e.g.16F877.h). It is also possible to make new header
files. Refer to file ‘chip.txt’ for details.

#pragma codepage [=] <0,1,2,3, ..15>
/1 12 bit core 14 bit core
0 // 0x000 - Ox1FF 0x0000 - OxO7FF

1 // 0x200 - Ox3FF 0x0800 - OxOFFF
2 |/ 0x400 - Ox5FF 0x1000 - Ox17FF
3 // 0x600 - Ox7FF 0x1800 - Ox1FFF

Defines the codepage to be used. Code is located at the start of the active codepage, or from the current
active location on that page. The codepage cannot be changed inside a function. Non-existing pages for a
specific device are mapped into existing ones.

#pragm codepage 3
/* follow ng functions are | ocated on codepage 3 */

51

CC5X C Compiler B Knudsen Data

#pragma computedGoto [=] <0,1,2>

This statement can be used when constructing complicated computed goto's. Refer to Chapter 9.2
Computed Goto on page 113 for details.

#pragm conputedGoto 1 // start region

#pragm conputedGoto O // end of region
#pragm conputedGoto 2 // start large region

#pragma config [/<regNr> <value>] [<id>] = <state> [, <id> = <state>]

The pragma config statement supports device configuration definition and setting and 1D register setting.
The compiler supports both direct and symbolic setting of the device configuration. It is NOT allowed to
combine direct and symbolic config settings. Example symbolic config setting:

#pragma config FOSC = ECL // setting a config synbol
#pragma config PWRTE = ON, CP = ON, WRT = ALL

In order to use symbolic config register setting there must be a symbolic config definition. This is
normally found in the device header file:

#pragma config /1 Ox3FFD FOSC = ECL
Direct config setting is an alternative:
#pragma config = (0x3 | 0x10) & Ox1FF

#pragm config regl
#pragm config reg2

0x2 // equivalent to #pragma config = 0x2
0x3 | Ox4

#pragma config reg9 0x0
For the first config register it is also possible use the '&="and the '|=' operators. The default setting of the
config bits are 0 when using these operators:

#pragma config |= 0x100 // set bit 8

#pragma config & OxFFFC // clear bit 0 and 1
#pragma config &= ~3 /1 clear bit 0 and 1
#pragma config |= 3 /1 set bit 0 and 1

Setting ID-locations in the source code:
#pragma config I D=0x1234 // all 4 locations, 4 bit in each
OxF // location O

Ox0 // location 1
1, ID3] = 0x3

#pragma config 1D 0]
#pragma config D 1]
#pragma config | Q2]

Refer to Chapter 4.2 PICmicro Configuration on page 58 for more details.
#pragma config_def [=] <value>

Defines the position and size of the supported config identifiers, and is normally found in PICmicro
header files. Refer to file ‘chip.txt’ for details.

52

CC5X C Compiler B Knudsen Data

#pragma config_reg [=] <address>

The default address of config register can be changed. There is normally no need to do this. The
following pragma statement will change the default configuration word address:

#pragma config reg Ox3FF

Some devices use a different physical address of the configuration word compared to the default logical
address established. The chip programming software will normally map the configuration word in these
cases.

#pragma config_reg2 [=] <address>
The address of the second config register is normally defined in the header file using:

#pragm config _reg2 0x2008

#pragma data_area [=] <start_address> : <last_address>

The 14 bit standard core uses normally region 0x2100 - 0x21FF for EEPROM/data storage in the files
generated by the compiler. For some devices (12 bit core) it is required to define the area used for such
data. The following statement should be located in the header file:

#pragm data_area 0x400 : Ox43F

#pragma inlineMath <0,1>
The compiler can be instructed to generate inline integer math code after a math library is included.

#pragma inlineMath 1
a=»>b*c; /1 inline integer code is always generated
#pragma inlineMath O

#pragma insertConst

The compiler will normally insert ‘const' data at the start of each codepage (after the interrupt routine).
The #pragma insertConst statement will allow ‘const' data for the current codepage to be inserted between
user functions, or at a specific address when using #pragma origin first. The current codepage can also be
set by using #pragma codepage.

#pragma interruptSaveCheck <n,w,e>

The compiler will automatically check that vital registers are saved and restored during interrupt. Note
that the compiler will not check register saving on the enhanced 14 bit core because of the hardware
context saving of these devices. Please refer to Chapter 6.3 Interrupts on page 67 for details (or file
‘int16¢cxx.h’). The error and warning messages can be removed:

#pragma i nterrupt SaveCheck n // no warning or error
#pragma i nterrupt SaveCheck w // warning only
#pragma i nterrupt SaveCheck e // error and warning (default)

#pragma library <0/1>

CC5X will automatically delete unused (library) functions.

#pragma library 1

/1 functions defined here are deleted if unused
/1 applies to prototypes and function definitions
#pragma library O

53

CC5X C Compiler B Knudsen Data

#pragma location [=] <0,1,2,3,.. 15, - >

This statement can be used to locate the functions on different codepages. Refer to Chapter 6.1 Program
Code Pages on page 65 for more details.

#pragma mainStack <minVarSize> @ <lowestStartAddr>

This statement defines a main stack for local variables, parameters and temporary variables. The main
stack is not an additional stack, but tells the compiler where the main stack is located (which bank). Only
variables above or equal to <minVarSize> will automatically be put in the main stack. The
<lowestStartAddr> is the lowest possible start address for the main stack (the stack grows upwards).

#pragma nai nStack 3 @ 0x20

Using this pragma means that local variables, parameters and temporary variables of size 3 bytes and
larger (including tables and structures) will be stored in a single stack allocated no lower than address
0x20. Smaller variables and variables with a bank modifier will be stored according to the default/other
rules. Size 0 means all variables including bit variables.

Note that #pragma rambank is ignored for variables stored in the main stack. Addresses ranging from
0x20 to Ox6F/0x7F are equivalent to the bank0 type modifier.

#pragma minorStack <maxVarSize> @ <lowestStartAddr>

This statement defines a minor stack for local variables, parameters and temporary variables. One reason
for defining a minor stack is that it may be efficient to use shared RAM or a specific bank for local
variables up to a certain size. Only variables below or equal to <maxVarSize> will automatically be put
in the minor stack. The <lowestStartAddr> is the lowest possible start address for the minor stack (the
stack grows upwards).

#pragm minor Stack 2 @ 0x70

In this case, local variables, parameters and temporary variables up to 2 bytes will be put in shared RAM
from address 0x70 and upward. Larger variables and variables with a bank modifier will be stored
according to the default/other rules. Size 0 means bit variables only. This pragma can be used in
combination with the main stack. The variable size defined by the minor stack has priority over the main
stack.

#pragma optimize [=] [N:] <0,1>
This statement enables optimization to be switched ON or OFF in a local region. A specific type of
optimization can also be switched on or off. The default setting is on.

N Function

1. redirect goto to goto.

2. remove superfluous gotos.

3. replace goto by skip instructions.

4. remove instructions that affect the zero-flag only.

5. replace INCF and DECF by INCFSZ and DECFSZ.

6. remove superfluous updating of page selection bits.

7. remove other superfluous instructions.

8. remove superfluous loading of W.
Exanpl es:
#pragma optimze O /* ALL off */
#pragma optimze 1 /* ALL on */
#pragma optimze 2:1 /* type 2 on */
#pragma optimze 1:0 /* type 1 off */

54

CC5X C Compiler B Knudsen Data

/* conbi nations are al so possible */
#pragma optimze 3:0, 4:0, 5:1
#pragma optimze 1, 1:0, 2:0, 3:0

NOTE: The command line option -u will switch optimization off globally, which means that all settings
in the source code are ignored.

#pragma origin [=] <expression>
Valid address region is 0x0000 - Ox1FFF. Defines the starting address (and codepage) of the following

code. The current active location on a codepage cannot be moved backwards, even if there is no code in
that area. Origin cannot be changed inside a function.

Examples:
#pragma origin 4 // interrupt start address
#pragma origin Ox700 + 2

#pragma packedCdataStrings <0,1>

Strings will normally be packed into 2*7 bits when using cdata. This statement allows the packing of
strings to be enabled and disabled for different parts of the source code. See Section Storing EEPROM
Data on page 102 in Chapter 6.9 The cdata Statement for more details.

#pragma rambank [=] <0,1,2,3,..31, - >

14 bit core:
- => nmapped space: (chip specific)
0 => bank O: 0 (0x000) - 127 (0OxO7F)

1 => bank 1: 128 (0x080) - 255 (OxOFF)

2 => bank 2: 256 (0x100) - 383 (O0x17F)

3 => bank 3: 384 (0x180) - 511 (Ox1FF)
12 bit core:

- => napped space: 8 - 15 (OxO0F)
0 => bank O: 16 (0x10) - 31 (Ox1F)
1 => bank 1: 48 (0x30) - 63 (0x3F)
2 => bank 2: 80 (0x50) - 95 (Ox5F)
3 => bank 3: 112 (0x70) - 127 (Ox7F)

#pragma rambank defines the region(s) where the compiler will allocate variable space. The compiler
gives an error message when all locations in the current bank are allocated.

RAM banks are only valid for some of the devices. Non-existing banks for the other devices are mapped
into defined RAM space.

#pragma rambase [=] <n>

Defines the start address when declaring global variables. This statement is included for backward
compatibility reasons only. The use of rambank and rambase are very similar. The address has to be
within the RAM space of the chip used.

12 bit core note: The locations from address 0 to 31 are treated as a unit. Using start address 7 means that
locations in the mapped register space and bank 0 are allocated. Using start address 32 implies that
locations in the mapped register space are allocated.

NOTE: The start address is not valid for local variables, but rambase can be used to select a specific
RAM-bank.

55

CC5X C Compiler B Knudsen Data

#pragma ramdef <ra> : <rb> [MAPPING]
This statement is normally used in PICmicro header files. Refer to file ‘chip.txt’ for details.

#pragma resetVector <n>

Some chips have an unusual startup vector location (like the PIC16C508/9). The reset-vector then has to
be specified. This statement is normally NOT required, because the compiler normally uses the default
location, which is the first (14 bit core) or the last location (12 bit core).

#pragma resetVector Ox1FF // at |ast code | ocation

#pragma resetVector 0 /1 at location O
#pragma reset Vector 10 /1 at location 10
#pragma reset Vector - /1 NO reset-vector at all

#pragma return[<n>] = <strings or constants>

This allows multiple return statements to be inserted. This statement should be proceeded by the skip()
statement. The compiler may otherwise remove most returns. The constant <n> is optional, but it allows
the compiler to print a warning when the number of constants is not equal to <n>. Refer to Chapter 9.2
Computed Goto on page 113 for more details. Note that ‘const’ data types should normally be used for
constant data.

skip(W;
#define NoH 11

#pragma return[NoH] = "Hello world"
#pragma return[5] =1, 4, 5, 6, 7
#pragma return[] =012 3 44 'H \
"Hell 0" 2 3 4 0x44
#pragma return[]="'H 'e" "I 0
#pragma return[3] = 0b010110 \
O0b111 0x10
#pragma return[9] = "a \" \r\n\0"
#pragma return[] = (10+10*2), (Ox80+' E) "nd"
#pragma return[] = 10000 : 16 /* 16 bit constant */ \
0x123456 : 24 /* 24 bit constant */ \
(10000 * 10000) : 32 /* 32 bit constant */

#pragma sharedAllocation

This pragma allows functions containing local variables and parameters to be shared between
independent call trees (interrupt and the main program). However, when doing this there will be a risk of
overwriting these shared variables unless special care is taken. Further description is found in Section
“Functions shared between independent call trees” in Chapter 6.2 Subroutine Call Level Checking.

#pragma stackLevels <n>

The number of call levels can be defined (normally not required). The 12 bit core uses 2 levels by default.
The 14 bit core uses 8 levels by default, and the enhanced 14 bit core uses 16 levels by default.

#pragma stackLevels 4 // max 64

#pragma unlocklSR

The interrupt routine normally has to reside at address 4. The following pragma statement will allow the
interrupt routine to be placed anywhere. Note that the compiler will NOT generate the link from address 4
to the interrupt routine.

#pragma unl ockl SR

56

CC5X C Compiler B Knudsen Data

#pragma updateBank [entry | exit | default] [=] <0,1>

The main usage of #pragma updateBank is to allow the automatic updating of the bank selection register
to be switched on and off locally. These statements can also be inserted outside functions, but they should
surround a region as small as possible

#pragm updateBank 0 /* OFF */
#pragm updat eBank 1 /* ON */

Another use of #pragma updateBank is to instruct the bank update algorithm to do certain selections.
These statements can only be used inside functions:

#pragm updat eBank entry = 0
/* The 'entry' bank forces the bank bits to be set
to a certain value when calling this function */

#pragm updat eBank exit =1
/* The '"exit' bank forces the bank bits to be set
to a certain value at return fromthis function */

#pragma updat eBank default = 0

/* The 'default' bank is used by the conpiler for
| oops and | abel s when the al gorithm gives up
finding the optimal choice */

#pragma update_FSR [=] <0,1>
Allows the automatic updating of the bank selection bits FSR.5 and FSR.6 to be switched on and off

locally. This can be useful in some cases when INDF is used directly in the user code. The statement
works for core 12 devices with more than one RAM bank. It is ignored for the other devices.

#pragm update FSR 0 /* OFF */
#pragm update FSR 1 /* ON */

These statements can be inserted anywhere, but they should surround a region as small as possible.

#pragma update_IRP [=] <0,1>
Allows the automatic updating of the indirect bank selection bit IRP to be switched on and off locally.

The statement is ignored when using the 12 bit core and enhanced 14 bit core. The statements can be
inserted anywhere.

#pragma update_|

RPO /* OFF */
#pragm update_ IRP 1

/* ON */

#pragma update PAGE [=] <0,1>

Allows the automatic updating of the page selection bits to be swiched on and off locally. This is not
recommended except in special cases. The page bits are found in the STATUS register for core 12
devices, and in PCLATH for core 14.

#pragm update PAGE 0 /* OFF */
#pragm update_ PAGE 1 /* ON */

#pragma update_RP [=] <0,1>

Allows the automatic updating of the bank selection bits RP0 and RP1 to be switched on and off locally.
The statement is ignored when using the 12 bit core.

57

CC5X C Compiler B Knudsen Data

#pragm update RP 0 /* OFF */
#pragm update RP 1 /* ON */

These statements can be inserted anywhere, but they should surround a region as small as possible.

#pragma user_ID_addr [=] <address>

The default start address of user ID can be changed. There is normally no need to do this. The following
statement should be located in the chip header file:

#pragma user _| D_addr 0x440

#pragma versionFile [<file>]

Allows a version number at the end of the include file to be incremented for each compilation. The use of
this statement is defined in Chapter 5.2 Automatic incrementing version number in a file on page 63.

#pragma wideConstData [<N> | p | r]

Enable storing of 14 bit data for 14 bit core devices. Details are found in Chapter 2.5 Const Data Support
on page 30.

4.2 PICmicro Configuration

PICmicro configuration information can be put in the generated hex and assembly file. ID locations can
also be programmed. The configuration information is generated ONLY WHEN the #pragma config
statement is used. The compiler supports both direct and symbolic setting of the device configuration. It
is NOT allowed to combine direct and symbolic config settings.

SYMBOLIC CONFIG SETTING:
The config settings can be defined using standard symbols for the actual device. Example usage:

<state> [, <id> = <state>]

#pragma config <id>

#pragma config FOSC = ECL // ECL, External d ock
#pragma config WDTE = SWDTEN

#pragma config PWRTE = ON, CP = ON, WRT = ALL
#pragma config BORV = 25

Option -VG or -VVg will list the available symbolic config settings at the end of the *.var file generated for
the project. This list can be copied to a project C source file and modified to desired settings.

-VG: list default config settings and alternatives
-Vg : list config setting alternatives

The config symbols are found at at the end of the device header file. Example definitions:

#pragma config /<regNr> <val ue> <id> = <state>

#pragma config /1 Ox3FF8 FOSC = LP
#pragma config /1 Ox3FFD FOSC = ECL
#pragma config /1 Ox3FE7 WDTE = OFF

= SWDTEN

#pragma config /1 Ox3FEF WDTE

58

CC5X C Compiler B Knudsen Data

It is possible to disable the symbolic config definitions found in the header files for backward
compatibility with the fixed config symbols in compiler versions older than version 3.6.

#pragma config /<regNr> <val ue> <id> = <state>

DIRECT CONFIG SETTING:

#pragma config [<id>] = <state> [, <id> = <state>]

<id> . <regl, reg2, .. reg9>
<state> : <val ue> or <expression>

#pragma config = (0x3 | 0x10) & Ox1FF

#pragma config regl = 0x2 // equivalent to #pragm config = 0x2
#pragma config reg2 = Ox3 | 0x4

0x0

#bragrra config reg9

For the first config register it is also possible use the '&="and the '|=' operators. The default setting of the
config bits are 0 when using these operators.

#pragma config |= 0x100 // set bit 8
#pragm config & OxXFFFC // clear bit 0 and 1

#pragma config &= ~3 /1 clear bit 0 and 1
#pragma config |= 3 /1 set bit 0 and 1
Default configuration word address:

e 12 bit core: OXFFF

e 14 bit core: 0x2007 and 0x2008

e 14 bit enhanced core: 0x8007 .. 0x800F

It is possible to use the STANDARD MPASM identifiers for defining to configuration bits. See example
in file ‘config.txt'.

Programming of ID-locations:
#pragma config | D=0x1234 // all 4 locations, 4*4 bit
#pragma config IDJ0O] = OxF // location O
#pragma config ID[1] = Ox1 // location 1
#pragma config 1D 2] =1, 1D 3]=0x2

Default User ID addresses:

16C54/ 55: 0x200- 0x203
16C56: 0x400- 0x403
16C57/ 58: 0x800- 0x803
14 bit core: 0x2000- 0x2003

14 bit enhanced core: 0x8000-0x8003

59

CC5X C Compiler B Knudsen Data

5 COMMAND LINE OPTIONS

The compiler needs a C source file name to start compiling. Other arguments can be added if required.
The syntax is:

CC5X [options] <src>.c [options]

-a[<asmfile>] : generate assembly file.
The default file name is <src>.asm

-A[scHDpftumiJRbeokgN+N+N] : assembly file options

s: symbolic arguments are replaced by numbers

c: no C source code is printed

H: hexadecimal humbers only

D: decimal numbers only

P: use " in front of decimal constants

f: no object format directive is printed

t: no tabulators, normal spaces only

u: no extra info at the end of the assembly file

m: single source line only

i: no source indentation, straight left margin

J: put source after instructions to achieve a compact assembly file.
R: detailed macro expansion

b: do not add rambank info to variables in the assembly file

e: do not add ',1' to instructions when result is written back to the register
o: do not replace OPTION with OPTION_REG

k: do not convert all hexadecimal numbers (11h -> 0x11)

g: do not use PROCESSOR instead of the list directive

N+N+N: label, mnemonic and argument spacing. Default is 8+6+10.

-b : do not update bank selection bits
12 bit core: FSR.5 and 6
14 bit core: STATUS.RPO and RP1

-bu : non-optimized updating of the bank selection bits

-B[pims] : write output from preprocessor to *.cpr
p : partial preprocessing

i :noinclude files

m: modify symbols

s : modify strings

-cd : allow cdata outside program space (warning only)

-cfc : use old format on config and idlocs in generated assembly file
-chu : disable sorting of addresses in generated HEX file

-cif : search included file in directory containing current file(s)
-cI<N> : set code generator level, N=0:0ld, N=1:improved

-cu : use 32 bit evaluation of constant expressions

-cxc : do not search current directory for include files

-CF[<file>] : produce COFF (.cof) debugging file, C mode
-CCJ<file>] : produce COD debugging file, C mode
-CAJ<file>] : produce COD debugging file, ASM mode
-Ce : remove extra byte names (nnn_e<N>) from COD file

60

CC5X C Compiler B Knudsen Data

-dc : do not write compiler output file <src>.occ
-D<name>[<token>xxx] : define macro. Equivalent to #define name xxx

-e : single line error messages (no source lines are printed).
-ed : do not print error details

-ew : do not print warning details

-eL : list error and warning details at the end

-E<N> : stop after <N> errors (default is 4).

-f<hex-file-format> : i.e. INHX8M, INHX8S, INHX16, INHX32. Default is INHX32 for enhanced 14
bit devices, otherwise INHX8M. Note that INHX8S uses two output files: <file>.HXH and <file>.HXL

-F : generate error file *.err
-FM : MPLAB and MPLAB X compatible error format
-FSRm : enable constant indirect access FSRx[K] outside range -32,31

-g : do not replace call by goto
-gb : replace goto by branch always

-GW : dynamic selected skip() format, warning on long format (default)
-GD : dynamic selected skip() format

-GS : always short skip() format (error if boundary is crossed)

-GL : always long skip() format

-I<directory> : include files directory/folder. Up to 5 library directories can be supplied by using
separate -I<dir> options. When using #include "test.h" the current directory is first searched. If the file is
not found there, then the library directories are searched, in the same order as supplied in the command
line option list (-1<dir>). The current directory is skipped when using #include <test.h>.

-j : do not update page selection bits
12 bit core: STATUS.PAQ and PA1
14 bit core: PCLATH

-li<ENVI> : include directory from environment variable (default CCINC)
-lh<ENVD> : load default directory from environment variable (default CCHOME)

-L[<col>,<lin>] : generate list file <src>.Ist

The maximum number of columns per line <col> and lines per page <lin> can be changed. The default
setting is -L80,60

-Ln : produce list file with no page formatting

-mcl : default 'const’ pointer size is 1 byte (8 bits)
-mc2 : default 'const’ pointer size is 2 bytes (16 bits)
-mrl : default RAM pointer size is 1 byte

-mr2 : default RAM pointer size is 2 bytes

-mmLl : default pointer size is 1 byte (all pointer types)
-mmz2 : default pointer size is 2 bytes (all pointer types)

-Ma : truncate all automatic generated labels in the assembly/list files
-o<file> : write hex file to <file>

-O<folder> : output files folder. Files generated by the compiler are put on this folder, except when a full
path name is supplied.

61

CC5X C Compiler B Knudsen Data

-p<device> : defines the chip type. The device has to be known internally: 16C54,55,56,57,58, 61,64,65,

71,73,74, 84 or supported by a header file (e.g., 16F877.H). Default device is 16C54.
-p- : clear any preceding option -p<chip> to allow chip redefinition

-g<N> : assume disabled interrupt at the <N> deepest call levels. For example, —q1 allows the main

program to use all stack levels for function calls. Disabling interrupts at the deepest call level MUST then

be properly ensured in the user application program.
-Q : generate call tree file (*.fcs).

-r : generate relocatable assembly (no hex file)

-r2[=][<filename.lkr>] : generate relocatable asm, use separate logical section for interrupt routine
-rb<N>: name on RAM bank 0 is BANK<N>, default BANKO

-ro<N>: add offset <N> when generating local variable block name

-rp<N>: name on codepage 0 is PROG<N>, default PROG1

-rx : make variables static by default

-S : silent operation of the compiler
-U : no optimizing

-V[rnuDGg] : generate variable file, <src>.var, sorted by address as default.
r: only variables which are referenced in the code

n: sort by name

u: unsorted

D: decimal numbers

G: list default config settings and alternatives

g: list config setting alternatives

-wB : warning when function is called from another code page

-wC : warning on upward compatibility issues

-we : disable warning when fixed point constants are rounded

-wf : disable warning for read-modify-write sequences on the same PORT
-wi : disable warning on multiple inline math integer operations

-wL : (12 bit core only) print warning on all GOTO links to functions residing on hidden half of a
codepage.

-wm : disable warning on single call to math integer function

-wO : warning on operator library calls

-wP : warning when code page bits are not correct

-wr : disable warning on recursive calls

-wS : warning (no error) when constant expression loses significant bits
-wU : warning on uncalled functions

-wx : disable warning on "suspicious pointer conversion"

-wz : disable warning on "incompatible and nonportable pointer conversion™

-W : wait until key pressed after compilation

-x<file> : assembler executable: -x"C:\Program Files\Microchip\MPASM Suite\mpasmwin.exe"

-X<option> : assembler option: -X/q (all options must be separate)

Doublequotes " " allows spaces in the option :
-1"C\Program Fi |l es\ cc5x"

A path name can be written using /" if this is supported by the file system, for example:
c:/conmpiler/lib/file.h

62

CC5X C Compiler B Knudsen Data

Default compiler settings:

» hex file output to file <name>.hex

e processor = 16C54

e optimizing on

» extended call level is allowed

e automatic update of bank and page selection bits

Permanent assigned settings:
* nested comments is allowed
e charisunsigned

5.1 Options in afile
Options can be put in a file. The syntax is:

cchx [..] +<filename> [..]

Many option files can be included, and up to 5 levels of nested include files are allowed. Options in a file

allow an unlimited number of options to be stated. Linefeed, space and TAB separates each option.

Comments can be added in the option file using the syntax:

/! the rest of the line is a comment

Spaces can be added to each option if a space is added after the '-' starting the option. This syntax disables

using more than one option on each line. Examples:

- DVMVAC =1+ OP

- p 16C54 /1 comrent

-p 16C54 /1 this will not work
- p 15C64 -a // not this either

Note that the file path is required if the file does not reside on the current directory.
String translation rules for options in a file:

1. Doublequotes " " allow spaces in the option; quotes are removed
2. Using \" means a single quote " in an option

-1"C\Program Fi |l es\ cc5x" ==> -1 C:\ Program Fi | es\ cc5x
-1C "\ Program Fi |l es"\ cc5x ==> -1 C.\ Program Fi | es\ cchx
-DWString="\"Hello\n\"" ==> -DWString="Hel l o\ n"
-DQuot e="\\ "' => -DQuote="\""'

5.2 Automatic incrementing version number in a file

The compiler is able to automatically increment one or more version numbers for each compilation.

Three different syntax alternatives are available.

1. Option : -ver#verfile.c
#i nclude "verfile.c" [/ or <verfile.c>

2. Option : -ver
#pragma versionFile /1 next include is version file

63

CC5X C Compiler B Knudsen Data

#i nclude "verfile.c" [/ or <verfile.c>

3. Option : -ver
#pragma versionFile "verfile.c" [/ or <verfile.c>

Note that the command line option is required to make this increment happen. It is the decimal number
found at end of the included file that is incremented. The updated file is written back before the file is
compiled. No special syntax is assumed in the version file. Suggestions:

#defi ne MY_VERSION 20
#define VER_ STRING "1.02.0005"
/* VERSION : 01110 */

If the decimal number is 99, then the new number will be 100 and the file length increases by 1. If the
number is 099, then the file length remains the same. A version file should not be too large (up to 20k),
otherwise an error is printed.

Formats 2 and 3 above allow more than one version file. It is recommended to use conditional
compilation to manage several editions of the same program.

5.3 Environment Variables
Environment variables can be used to define include folders and primary folder:

The variable CCINC is an alternative to the -I<path> option. The compiler will only read this variable (or
specified variable) when using the following command line option:

-1 : read default environment variable CCl NC
-li <ENVI > : read specific environnent variable

Variable CCHOME can be used to define the primary folder during compilation. The compiler will only
read this variable (or specified variable) when using the following command line option:

-lh . read default environnment variabl e CCHOVE
-1 h<ENVP> : read specific environnent variable

64

CC5X C Compiler B Knudsen Data

6 PROGRAM CODE

6.1 Program Code Pages

Many of the PICmicro devices have more than one code page. A code page contains 512 words on the 12
bit core and 2048 words on the 14 bit core. Using more than one code page requires code page selections.
All functions following a #pragma codepage statement are put on the page specified. Codepage 0 is used
as default.

/* functions proceeding the first codepage statement are placed on
codepage 0 */

#pragma codepage 2

char fx(void) { .. }
/* this function is placed on codepage 2 */

#pragma codepage 1
/* followi ng functions are placed on codepage 1 */

When switching between codepages, the compiler will keep track on the next free location on each
codepage. Use of codepages is just a matter of optimization, as long as the compiler accepts the selection.
The optimal combination requires least code (or has a speed advantage). The optimizer removes
unnecessary setting and clearing of the page selection bits.

Some of the PICmicro devices have 4 code pages. Note that calls which requires switching between page
0 and 3, or page 1 and 2 requires more instructions than the other combinations. The enhanced 14 bit core
requires only one instruction for all code page switching.

The compiler produces an error message when page limits are exceeded. Invalid code pages are mapped
to valid ones.

Another way of locating functions

The statement #pragma location is capable of locating prototypes on codepages as well as function
definitions. The statement is useful when locating functions defined in library files, or when locating
functions in large programs. Its normal use is in limited regions in header files. The rules when using
#pragma location are:

1. A function prototype will locate the function on the desired codepage, even if the current active
codepage is different when the function definition is compiled.

2. #pragma location has higher priority than #pragma codepage.

3. '#pragma location - restores the active codepage defined by the last #pragma codepage (or #pragma
origin).

#pragma location 1 // codepage 1

void f1l(void); /1 assigned to codepage 1
void f2(void);

void f3(void);

#pragma | ocation 3 // codepage 3
void f4(void);

#pragma location - // return to the active codepage
void f5(void); /1 this prototype is not |ocated

65

CC5X C Compiler B Knudsen Data

Notes:

1. The location statements have to be compiled before the function definition
2. Functions not located are placed on the current active codepage
3. Awarning is printed in case of conflicts

The #pragma location statement should only be used if required. An example is when functions inside a
module (file) have to be placed on different codepages, or if much tuning is required to find the optimal
combination. The #pragma codepage statement is normally sufficient.

The page type modifier
The page type modifiers page0 .. pagel5 can replace #pragma location/codepage.

page2 void fx(void) { .. } [/ in codepage 2
pagel char f2(char a); /1 in codepage 1

The page type modifier defines the codepage to locate the function in, both for function prototypes and
function definitions.

NOTE 1: The page type modifier has higher priority than both #pragma codepage and #pragma location.

NOTE 2: When the codepage have been defined using the page type modifier or #pragma location, then
the location is fixed and cannot be changed in the function definition or by using a second prototype.

Invalid code pages are mapped to valid ones.

Page selection bits

The page selection bits are automatically updated by the compiler, and attempts to set or clear these bits
in the source code are removed by the optimizer. This can be switched off by the -j command line option.

Core 12 note: assigning a value to the status register (f3) may cause the automatic updating to fail.

6.2 Subroutine Call Level Checking

Subroutine calls are limited to 2 levels for the 12 bit core and 8 levels for the 14 bit core. The compiler
automatically checks that this limit is not exceeded.

The compiler can replace CALL by GOTO to seemingly achieve deeper call levels.

1. When a function is called once only, the CALL can be replaced by a GOTO. All corresponding
returns are replaced by GOTO. Note that the call will only be replaced by GOTO when the call level
must be reduced. Also, the CALL is NOT replaced by GOTO when:

a) The program counter (PCL) is manipulated (computed goto) in a function of type char.
b) The number of return literals exceeds 10
c) The function is called from another codepage and the number of returns exceeds 10

2. Call followed by return is replaced by a single goto.

When subroutines are located in the second half of a codepage, it cannot be called directly when using 12
bit core devices. The compiler automatically inserts links to such "hidden" subroutines.

Stack level checking when using interrupt

CC5X will normally assume that an interrupt can occur anywhere in the main program, and also at the
deepest call level. An error message is printed if stack overflow may occur. This is not always true,
because the interrupt enable bits controls when interrupts are allowed. Sometimes the main program
needs all 8 stack levels for making calls.

66

CC5X C Compiler B Knudsen Data

The -q<N> option forces CC5X to assume that an interrupt will NOT occur at the <N> deepest call levels
of the main program.

The application writer must then ensure that interrupts will not occur when executing functions at the
deepest <N> call levels, normally by using the global interrupt enable bit. CC5X will generate a warning
for the critical functions. (The normal error message is always generated when the application contains
more than 8 call levels.)

For example, the -q1 option generates a warning for functions calls that will put the return address at
stack level 8 (no free stack entry for interrupt). Using -2 means an additional warning at stack level 7
will be generated if the interrupt routine requires 2 levels, i.e. contains function calls.

It is NOT recommended to use the -q<N> as a default option.

Functions shared between independent call trees

An error message is normally printed when the compiler detects functions that are called both from
main() and during interrupt processing if this function contains local variables or parameters. This also
applies to math library calls and const access functions. The reason for the error is that local variables are
allocated statically and may be overwritten if the routine is interrupted and then called during interrupt
processing.

The error message will be changed to a warning by the following pragma statement. Note that this means
that local variable and parameter overwriting must be avoided by careful code writing.

#pragma shar edAl | ocati on

Recursive functions

Recursive functions are possible. Please note that the termination condition has to be defined in the
application code, and therefore the call level checking cannot be done by the compiler. Also note that the
compiler does not allow any local variables in recursive functions. Function parameters and local
variables can be handled by writing code that emulates a stack.

A warning is printed when the compiler detects that a function calls itself directly or through another
function. This warning can be switched off with the -wr command line option.

6.3 Interrupts
The 14 bit core allows interrupts. The structure of the interrupt service routine is as follows:

#i ncl ude "int16CXX. h"
#pragma origin 4

i nterrupt serverX(void)

{
/* Wand STATUS are saved by the next macro. PCLATH is al so

saved if necessary. The code produced is CPU dependent. */

/* Note that the Enhanced 14 bit core has hardware register
save and restore of W STATUS, BSR, FSRx and PCLATH */

i nt_save_registers /1 W STATUS (and PCLATH)
//char sv_FSR = FSR;, // if required

/1 handl e the interrupt

67

CC5X C Compiler B Knudsen Data

/1 FSR = sv_FSR; /1 if required
int _restore_registers // W STATUS (and PCLATH)

}

/* I MPORTANT : G E should nornally NOT be set or cleared in
the interrupt routine. G E is AUTOVATI CALLY cl eared on
interrupt entry by the CPU and set to 1 on exit (by
RETFIE). Setting GE to 1 inside the interrupt service
routine will cause nested interrupts if an interrupt is
pendi ng. Too deep nesting may crash the program */

/* I MPORTANT : The register save style (i.e. INT_xxx_style) is
defined in the chip header file (i.e. 16F877.h) and should
NOT be defined in the application. Wong regi ster save style
may cause strange problens and is very difficult to trace. */

The keyword interrupt allows the routine to be terminated by a RETFIE instruction. It is possible to call a
function from the interrupt routine (it has to be defined by a prototype function definition first).

The interrupt routine requires at least one free stack location because the return address is pushed on the
stack. This is automatically checked by the compiler. Even function calls from the interrupt routine are
checked. However, if the program contains recursive functions, then the call level cannot be checked by
the compiler.

The interrupt vector is permanently set to address 4. The interrupt service routine can only be located at
this address. The #pragma origin statement has to be used in order to skip unused program locations.

The following pragma statement will allow the interrupt routine to be placed anywhere. Note that the
compiler will NOT generate the link from address 4 to the interrupt routine.

#pragma unl ockl SR

Vital registers such as STATUS and W should be saved and restored by the interrupt routine. However,
registers that are not modified by the interrupt routine do not have to be saved. Saving and restoring
registers is device dependent. The file int16CXX.H contains recommended program sequences for saving
and restoring registers. The interrupt routine can also contain local variables. Storage for local variables is
allocated separately because interrupts can occur anytime.

CC5X also supports CUSTOM save and restore sequences. If you want to use your own register save and
restore during interrupt, please read the following Section Custom interrupt save and restore.

IMPORTANT: CC5X will AUTOMATICALLY check that the registers W, STATUS, PCLATH and
FSR are saved and restored during interrupt.

Note that register save checking does not apply to the enhanced 14 bit core.

The compiler will detect if the FSR register is modified during interrupt processing without being saved
and restored. The supplied macros for saving and restoring registers will not save FSR. This has to be
done by user code when needed. If FSR is modified by a table or pointer access, or by direct writing, the
compiler will check that FSR is saved and restored, also in nested function calls. Note that the FSR
saving and restoring can be done in a local region surrounding the indexed access, and does not need to
be done in the beginning and end of the interrupt routine.

A warning is printed if FSR is saved but not changed. The error and warning messages printed can be
removed:

68

CC5X C Compiler B Knudsen Data

#pragma i nterrupt SaveCheck n // no warning or error
#pragma interrupt SaveCheck w // warning only
#pragma i nterrupt SaveCheck e // error and warning (default)

Note that the above pragma changes the checking done on all registers.

Custom interrupt save and restore

It is not required to use the above save and restore macros. CC5X also supports custom interrupt
structures. This is not interesting for the enhanced 14 bit core because of its hardware register saving.

A) You might want to use your own save and restore sequence. This can be done by inline assembly. If
CC5X does not accept your code, just insert (at your own risk):

#pragma i nterrupt SaveCheck n // no warning or error

B) No registers need to be saved when using the following instructions in the interrupt routine. The
register save checking should NOT be disabled.

bt ss(bx1); /1 BTFSS 0x70, bx1 ; unbanked RAM SFR only
bx2 = 1; /1 BSF 0x70,bx2 ; unbanked RAM SFR only
bx1 = 0; /1 BCF 0x70,bx1 ; unbanked RAM SFR only
bt sc(bx1); /1 BTESC 0x70, bx1 ; unbanked RAM SFR only
sl eep(); /'l SLEEP

vs = swap(vs); [// SWAPF vs,1 ; unbanked RAM SFR only
vs = incsz(vs); // INCFSZ vs,1 ; unbanked RAM SFR only
nop(); /1 NOP

vs = decsz(vs); // DECFSZ vs,1 ; unbanked RAM SFR only
clrwdt(); /1 CLRWDT

C) It is possible to enable interrupt only in special regions (wait loops) in such a way that W, STATUS,
PCLATH and FSR can be modified during interrupt without disturbing the main program. Note that
interrupt must ONLY be enabled in codepage 0 when PCLATH is not saved. The register save can then
be omitted and the save checking must be switched off to avoid error messages:

#pragma i nterrupt SaveCheck n // no warning or error

INTERRUPTS CAN BE VERY DIFFICULT. THE PITFALLS ARE MANY.

6.4 Startup and Termination Code

The startup code consists of a jump to main() which has to be located on page zero. No variables are
initiated. All initialization has to be done by user code. This simplifies design when using the watchdog
timer or MCLR pin for wakeup purposes.

The SLEEP instruction is executed when the processor exits main(). This stops program execution and
the chip enters low power mode. Program execution may be restarted by a watchdog timer timeout or a
low state on the MCLR pin.

The 14 bit core also allows restart by interrupt. An extra GOTO is therefore inserted if main is allowed to
terminate (SLEEP). This ensures repeated execution of the main program. No extra GOTO is added when
a sleep() command is inserted anywhere else in the application program.

Clearing ALL RAM locations

The internal function clearRAM() will set all RAM locations to zero. The generated code uses the FSR
(FSRO) register. The recommended usage is:

69

CC5X C Compiler B Knudsen Data

voi d mai n(voi d)

if (TO==1&&% PD ==1/* power up */) {
WARM_RESET:
clearRAM); // set all RAMto O
}

i f (condi tion)
got o WARM RESET;
}

The code size and timing depends on the actual chip. The following table describes the basic types. Chip
devices not found here maps to one of the described types.

INS | CYC TOTCYC 4MHz RAM START LAST BANKS PI Cnmicro

8 6 145 0. 15ns 25 7 Ox1F - 16C54
9 4 202 0. 20ns 41 7 Ox3F 2 16C509
13 4 290 0.29ns 72 8 Ox7F 4 16C57
8 7 254 0. 25ns 36 12 Ox2F - 16C84
6 5 482 0. 48ns 96 32 Ox7F 1 16C620A
12 5 644 0.64ns 128 32 OxBF 2 12C671
9 4 770 0.77ms 176 32 OxFF 2 16C642
9 4 770 0.77ms 192 32 OxFF 2 16Cr4
10 4 771 0.77ms 192 32 OxFF 4 16C923
19 5 1110 1.11nms 224 32 Ox14F 4 16C627
12 4 1058 1.06nms 256 32 Ox17F 4 16C773
15 4 1807 1.81ms 368 32 Ox1FF 4 16Cr77

INS: number of assembly instructions required

ICYC: cycles (4*clock) for each RAM location cleared
TOTCYC: total number of cycles (4*clock) required
4MHz: approx. time in milliseconds required at 4 MHz
RAM: total number of RAM locations

START: first RAM address

LAST: last RAM address

BANKS: number of RAM banks

PICmicro: chip type described

6.5 Library Support

The library support includes standard math and support for user defined libraries. The library files
should be included in the beginning of the application, but after the interrupt routine for all libraries
located on codepage 0.

/1l ..interrupt routine

#i ncl ude “mat hl6. h” /1 16 bit integer math
#include “math24f.h” [/ 24 bit floating point
#include “math24l b.h” // 24 bit math functions

CC5X will automatically delete unused library functions. This feature can also be used to delete unused
application functions:

#pragma library 1

/1 library functions that are deleted if unused
#pragma library O

70

CC5X C Compiler B Knudsen Data

Math libraries

Integer: 8, 16, 24 and 32 bit, signed and unsigned
Fi xed point: 20 formats, signed and unsigned
Fl oating point: 16, 24 and 32 bit

All libraries are optimized to get compact code. All variables (except for the floating point flags) are
allocated on the generated stack to enable efficient RAM reuse with other local variables. A new concept
of transparent sharing of parameters in a library is introduced to save code.

Note that fixed point requires manual worst case analysis to get correct results. This must include
calculation of accumulated error and avoiding truncation and loss of significant bits. It is often
straightforward to get correct results when using floating point. However, floating point functions require
significantly more code. In general, floating point and fixed point are both slow to execute. Floating point
is FASTER than fixed point on multiplication and division, but slower on most other operations.

Operations not found in the libraries are handled by the built in code generator. Also, the compiler will
use inline code for operations that are most efficiently handled inline.

The following command line options are available:

-we : no warning when fixed point constants are rounded
-wO : warning on operator library calls

-wi : no warning on multiple inline math integer operations
-wm : no warning on single call to math integer function

Integer libraries

The math integer libraries allow selection between different optimizations, speed or size. The libraries
contain operations for multiplication, division and division remainder.

mat hl6.h : basic library, up to 16 bit
mat h24. h : basic library, up to 24 bit
mat h32. h : basic library, up to 32 bit

mat h16m h: speed, size, 8*8, 16*16

mat h24m h: speed, size, 8*8, 16*16, and 24*8 nmultiply

mat h32m h: speed, size, 8*8, 16*16, and 32*8 multiply

The math??mh libraries can be used when execution speed is critical
NOTE 1: they nust be included first (before math??.h)

NOTE 2: math??.h contains simlar functions (which are del eted)

The min and max timng cycles are approxi mate only. The enhanced 14
bit core will use fewer cycles and | ess code.

Sign: -: unsigned, S: signed

Sign Res=argl op arg2 Program Approx. CYCLES

A: mat h32. h

B: mat h24. h

C. mat h16. h Code mn aver max
ABC - 16 = 8 * 8 13 83 83 83
ABC S 16 = 8 * 8 21 85 85 85
ABC S/- 16 = 16 * 16 18 197 222 277
.B. S 24 = 16 * 16 35 220 261 334

71

CC5X C Compiler

B Knudsen Data

A. S 32 =
A . - 32 =
AB. - 24 =
..C - 16 =
.B. - 24 =
A . - 32 =
.B. - 24 =
A . - 32 =
.B. - 24 =
A. S/- 32 =
ABC - 16 =
AB. - 24 =
A . - 32 =
ABC - 16 =
.B. - 24 =
A . - 32 =
.B. - 24 =
A . - 32 =
ABC S 16 =
AB. S 24 =
A. S 32 =
ABC S 16 =
.B. S 24 =
A. S 32 =
.B. S 24 =
A. S 32 =
ABC - 8 =
.B. - 8 =
A . - 8 =
ABC - 16 =
.B. - 16 =
A . - 16 =
.B. - 24 =
A . - 32 =
ABC S 8 =
.B. S 8 =
A. S 8 =
ABC S 16 =
.B. S 16 =
A. S 16 =
.B. S 24 =
A. S 32 =
A: mat h32m h
B: mat h24m h
C. mat h16m h
ABC - 16 =
ABC S/- 16 =
B - 24 =
A - 32 =

16 * 16
16 * 16
16 * 8
16 * 8
24 * 8
32 * 8
24 * 16
32 * 16
24 * 24
32 * 32
16 / 8
24 | 8
32/ 8
16 / 16
24 | 16
32/ 16
24 | 24
32/ 32
16 / 8
24 | 8
32/ 8
16 / 16
24 | 16
32/ 16
24 | 24
32 /] 32
16 % 8
24 %8
32 %8
16 % 16
24 % 16
32 % 16
24 % 24
32 % 32
16 % 8
24 %8
32 %8
16 % 16
24 % 16
32 % 16
24 % 24
32 % 32
8 * 8
16 * 16
24 * 8
32 * 8

42
22
15
16
16
17
26
31
25
31

18
19
20
25
31
32
36
47

33
37
41
49
53
57
66
83

18
19
20
23
29
30
34
45

30
35
39
46
50
54
66
86

Code
37
23+37
32+37
43+37

223
215
198
179
247
356
217
239
337
513

235
368
517
287
481
665
564
943

196
305
430
296
450
626
573
952

226
354
502
280
463
636
556
934

189
291
413
290
442
614
567
944

mn
50
74
124
178

253
240
198
179
247
356
263
310
410
654

235
368
517
291
512
718
576
966

201
310
436
309
473
660
597
990

226
354
502
283
497
698
567
955

190
292
415
297
455
634
584
974

aver
50
147
162
212

313
295
198
179
247
356
361
447
553
929

235
368
517
335
633
873
732
1295

211
326
457
361
543
747
762
1329

226
354
502
312
599
828
700
1254

195
300
425
332
501
692
725
1284

max

50
158
166
222

72

CC5X C Compiler

B Knudsen Data

Fixed point libraries

math16x.h : 16 bit fixed point, 8_8, signed and unsigned

math24x.h : 24 bit fixed point 8_16, 16_8, signed and unsigned
math32x.h : 32 bit fixed point 8_24, 16_16, 24_8, signed and unsigned

The libraries can be used separately or combined.

The timing stated is measured in instruction cycles (4*clock) and includes parameter transfer, call, return
and assignment of the return value. The min and max timing cycles are approximate only. The enhanced

14 bit core will use fewer cycles and less code.

Sign: -: unsigned, S
Sign Res=argl op arg2
mat h16x. h:

S 88=828~* 838

- 8 8=818~* 818

S 88=818/ 828

- 8 8=828/ 828
mat h24x. h:

S 16.8 =168 * 16_8
- 16_8 = 16_8 * 16_8
S 16.8 =168/ 16_8
- 16 8 = 16 8 / 16_8
S 8.16 =8_16 * 8_16
- 8 16 = 8_16 * 8_16
S 8.16 =8_16 / 8_16
- 8 16 = 8 16 / 8_16
mat h32x. h:

S 248 =248"* 248
- 24 8 =24 8 * 24 8
S 24 8 =248 24 8
- 24 8 =24 8/ 24_8
S 16_16= 16_16*16_16
- 16_16= 16_16*16_16
S 16_16= 16_16/16_16
- 16_16= 16_16/16_16
S 824 =824"* 824
- 8 24 =824 * 8 24
S 824 =824 824
- 8 24 =8 24 | 8 24

Floating point libraries

mat h16f. h
mat h24f . h

mat h24l b. h

mat h32f . h

mat h32l b. h

16 bit
24 Dbit
24 bit
32 bit
32 bit

si gned

Program

Code
47
23
51
35

Code
60
27
68
46

60
28
68
46

Code
77
35
85
57

78
36
85
57

77
35
85
57

floating point
floating point
floating point
floating point
floating point

Appr ox.
mn aver
226 263
214 252
497 518
528 558
mn aver
376 450
364 437
850 893
894 944
354 428
342 415

1050 1116
1104 1188
mn aver
558 722
546 709
1298 1366
1361 1432
561 704
549 690
1546 1650
1617 1733
529 672
517 658
1794 1936
1872 2033

basi ¢ mat h
basi ¢ mat h
library
basi ¢ mat h
library

CYCLES

max
339
326
584
680

max
577
580
1093
1222

555
558
1349
1520

max
983
1026
1761
1929

930
965
2097
2305

896
933
2433
2680

73

CC5X C Compiler

B Knudsen Data

NOTE: The timing values include parameter transfer, call and return and also assignment of the return
value. The min and max timing cycles are approximate only. The enhanced 14 bit core will use fewer

cycles and less code.

Basic 32 bit math:

Basic 24 bit nmath:

Basic 16 bit nath:

addi ti on
subtraction
nt16 -> fl oat 16
loatl1l6 -> intl6

a* b:

al/ b: division
a + b:

a b:

i

f

a* b: mltiplication
a/ b: division

a + b: addition

a - b: subtraction
int32 -> fl oat 32
float32 -> int32

a* b: mltiplication
a/ b: division

a + b: addition

a - b: subtraction
int24 -> float24
float24 -> int24

nmul tiplication

Appr ox. CYCLES

Si ze mn aver max

91 380 468 553
125 523 610 742
182 39 135 225

add+5 46 142 232

79 45 69 118
86 36 77 143

Approx. CYCLES

Si ze mn aver max

77 226 261 294
102 323 359 427
152 33 114 173

add+5 40 121 180

62 36 64 106
74 31 72 117

Approx. CYCLES

Si ze mn aver max

62 104 107 114
82 137 154 171
118 27 86 130

add+5 34 93 137

72 40 71 107
53 26 60 98

The following operations are handled by inline code: assignment, comparison with constants,

multiplication and division by a multiple of 2 (e.g., a*0.5, b * 1024.0, c/4.0).

Floating point library functions

float24 sqrt(float?24);

/1 square root

| nput range: positive nunbers including zero
Accuracy: MeE: 1, relative error: 1.5%10**-5 (*)

Timng: mn aver nmax
Size: 62 words

645 700 758 (**)

M ni mum conpl et e program exanple: 77 words

f

oat 32 sqrt (fl oat 32);

/1 square root

| nput range: positive nunbers including zero
Accuracy: ME: 1, relative error: 6*10**-8 (*)

Timng: mn aver max
Size: 76 words

1174 1303 1415 (**)

M ni mum conpl et e program exanpl e: 97 words

f

oat 24 | og(fl oat 24);

/1 natural log function

I nput range: positive nunbers above zero
Accuracy: Me 1, relative error: < 1.5%10**-5 (*)

Timng: mn aver max

2179 3075 3299 (**)

Si ze: 214 words + basic 24 bit math library
M ni mum conpl et e program exanpl e: 623 words

74

CC5X C Compiler

B Knudsen Data

fl

f

f

f

f

f

f

fl
fl

oat 32 | og(fl oat 32); /1 natural log function
I nput range: positive nunbers above zero
Accuracy: ME: 1, relative error: < 6*10**-8 (*)
Timng: mn aver max 3493 4766 5145 (**)
Si ze: 265 words + basic 32 bit math library

M ni mum conpl et e program exanpl e: 762 words

oat 24 | 0ogl0(fl oat 24); /1 10gl0 function

I nput range: positive nunbers above zero
Accuracy: ME: 1-2, relative error: < 3*10**-5 (*)
Timng: mn aver max 2435 3333 3569 (**)
Size: 15 words + size of |og()

M ni mum conpl et e program exanpl e: 638 words

oat 32 | 0gl0(fl oat 32); /1 10gl0 function

I nput range: positive nunbers above zero

Accuracy: ME: 1-2, relative error: < 1.2*10**-7 (*)
Timng: mn aver max 3935 5229 5586 (**)

Si ze: 17 words + size of |og()

M ni mum conpl et e program exanple: 779 words

oat 24 exp(fl oat 24); /1 exponential (e**x) function
I nput range: -87.3365447506, +88.7228391117
Accuracy: ME: 1, relative error: < 1.5*10**-5 (*)
Timng: mn aver max 1969 3026 3264 (**)

Size: 251 words + 102(fl oor24) + basic 24 bit math
M ni mum conpl et e program exanpl e: 673 words

oat 32 exp(float32); /1 exponential (e**x) function
I nput range: -87.3365447506, +88.7228391117
Accuracy: MeE: 1, relative error: < 6*10**-8 (*)
Timng: mn aver max 4465 4741 5134 (**)

Si ze: 322 words + 145(fl oor32) + basic 32 bit nath
M ni mum conpl et e program exanpl e: 847 words

oat 24 explO(fl oat 24); /1 10**x function

I nput range: -37.9297794537, +38.531839445
Accuracy: ME: 1, relative error: < 1.5*10**-5 (*)
Timng: mn aver nmax 1987 3005 3194 (**)

Si ze: 256 words + 102(fl oor24) + basic 24 bit nath
M ni mum conpl et e program exanpl e: 678 words

oat 32 explO(fl oat 32); /1 10**x function

I nput range: -37.9297794537, +38.531839445
Accuracy: Me: 1, relative error: < 6*10**-8 (*)
Timng: mn aver max 3605 4716 5045 (**)

Size: 326 words + 145(fl oor32) + basic 32 bit math
M ni mrum conpl et e program exanpl e: 851 words

oat 24 sin(fl oat24); /'l sine, input in radians

oat 24 cos(fl oat 24); /1 cosine, input in radians

I nput range: -512.0, +512.0

Accuracy: error: < 3*10**-5 (*)

The relative error can be |larger when the output is
near 0 (for exanple near sin(2*Pl)), but the
absolute error is lower than the stated val ue.

75

CC5X C Compiler B Knudsen Data

Timng: mn aver nax 396 2492 2746 (**)
Si ze: 215 words + basic 24 bit math library
M ni mum conpl et e program exanpl e: 595 words

float32 sin(float32); /1l sine, input in radians
float 32 cos(float32); /1 cosine, input in radians
| nput range: -512.0, +512.0 : Can be used over a
much wi der range if |ower accuracy is accepted
(degrades gradually to 1 significant decinal digit
at input value 10**6)
Accuracy: error: < 1.2*%10**-7 (*)
The relative error can be larger when the output is
near 0 (for exanple near sin(2*Pl)), but the
absolute error is lower than the stated val ue.
Timng: mn aver nmax 543 5220 5855 (**)
Si ze: 357 words + basic 32 bit math library
M ni mum conpl et e program exanpl e: 818 words

(*) The accuracy of the math functions have been checked using many thousands of calculations. ME=1
means that the mantissa value can be wrong by +/- 1 (i.e. 1 bit). The relative error is then 1.5*10° for 24
bit floating point, and 6*10°® for 32 bit floating point. Only a small fraction of the calculations may have
the stated error.

(**) The min and max timing cycles are approximate only. The enhanced 14 bit core will use fewer
cycles and less code. All timing is measured in instruction cycles. When using a 4 MHz oscillator, one
instruction cycle is 1 microsecond.

Fast and compact inline operations
The compiler will use inline code for efficiency at some important operations:

Integer:

- converting to left and right shifts: a*8,a/2

- selecting high/low bytes/words: a / 256, a % 256, b % 0x10000
- replacing remainder by AND operation: a % 64, a % 0x80

Fixed Point:
- converting to left and right shifts; a*8,a/2
- all operations except multiplication and division are implemented inline

Floating point:

- add/sub (incr/decr) of exponent: a * 128.0,a/ 2
- operations==and!=: a==b,a!=0.0

- comparing with constants: a >0, a <=10.0

- inverting the sign bit: a=-a,b=-a

Combining inline integer math and library calls

It is possible to force the compiler to generate inline integer math code after a math library is included.

This may be useful when speed is critical or in the interrupt service routine. Functions with parameters or

local variables are not reentrant because local variables are mapped to global addresses, and therefore the

compiler will not allow calls from both main and the interrupt service routine to the same function.
unsl6é a, b, c;

.a.=b* C; /1 inline code is generated

76

CC5X C Compiler B Knudsen Data

#i 'ncl ude "mat hl6. h"
a=»>b* c; /1 math library function is called

#pragma inlineMath 1
a=»>b* c; /1 inline code is generated
#pragma inlineMath O

a=>b* c; /1 math library function is called

Inline type modifier on math operations

It is possible to combine inline integer math and math library functions without making a special purpose
math library. This is done by stating that the selected operations are inline BEFORE the standard math
library is included. It is optimal to use inline code when there is only one operation of a certain type.

inline uns24 operator * (uns24 argl, uns24 arg2);
#i ncl ude "mat h24. h"

The math prototypes are found in the beginning of the standard math libraries. Just remember to remove
the operator name before adding the inline type modifier.

A warning is printed when there is ONE call to a unsigned integer math library function. The warning can
be disabled by the -wm command line option.

NOTE that the inline type modifier is currently IGNORED, except for the math operations.

Detection of multiple inline math integer operations

The compiler will print a warning when detecting more than one inline math integer operation of the
same type. Including a math library will save code, but execute slightly slower. Note that assembly code
inspection and type casts are sometimes needed to reduce the number of library functions inserted.

The warning can be disabled by the -wi command line option.

Using prototypes and multiple code pages

Using floating point on the 12 bit core where each codepage is 512 words will be challenging. It is
normally not required to define prototypes, even when using many code pages. If you want to place the
library functions to a certain codepage, this is easiest done by:

#pragma codepage 1
#i ncl ude "mat h24f . h"
#pragma codepage 0

Prototypes can be used when functions are called before they are defined. Note that operator functions
need a function name to be defined as prototypes.

Also note that the compiler use a linear search from the beginning of the operator table until a match for
the current operation is found. The operator definition/prototype sequence may therefore influence the
operator selected.

It is not recommended to modify the libraries by adding ‘pragma codepage’ between the functions.
Instead, prototypes and ‘pragma location' or the page type modifier makes function placement easier to set
up and tune. For example, placing the division function on codepage 1 and the other on the default
codepage can be done by:

77

CC5X C Compiler B Knudsen Data

#include “nmy_mat h. h"

#i ncl ude " mat h24f . h"

[]--eammm - begi nni ng-of -file ny_math.h --------------

fl oat 24 operator* _fmul 24(sharedM fl oat 24 argl, sharedM fl oat 24
arg2);

pagel fl oat24 operator/ _fdiv24(sharedM fl oat24 argl, sharedM fl oat 24
arg2);

fl oat 24 operator+ _fadd24(sharedM fl oat 24 argl, sharedM fl oat 24
arg2);

/1 .. etc.

N end-of-file ny_ math.h --------------

Fixed point example

#pragma chip PI CL6C73

#i ncl ude "nmat h24x. h"

unsl6 dat a;

fixedl6_8 tx, av, ng, a, vx, prev, kp

voi d mai n(voi d)

{
vx = 3.127;
tx += data; /1 automatic type cast
data = kp; /1 assign integer part
if (tx <0)
tx = -tx; /1 make positive
av = tx/20.0;
mg = av * 1.25;
a =ng * 0.98; /1 0.980469, error: 0.000478
prev = vx;
vx = a/5.0 + prev;
kp = vx * 0.036; /1 0.03515626, error: 0.024
kp = vx / (1.0/0.036); // 27.7773437
}

CODE: 274 instructions including library (130).

Floating point example

CODE: 635 instructions including library (470). The statements are identical to the above fixed point
example to enable code size comparison.

#pragma chip PI C16C73

#i ncl ude "mat h24f . h"

unsl1l6 dat a;

float tx, av, ng, a, vx, prev, kp;

voi d mai n(voi d)

{
I nit FpFl ags(); /1 enabl e roundi ng as default
vx = 3.127,
tx += data; /1 automatic type cast
data = kp; /1 assign integer part

78

CC5X C Compiler B Knudsen Data

if (tx <0)
tx = -tx; /1 make positive
av = tx/20.0;
mg = av * 1.25;
a =ng * 0.98;
prev = vx;
vx = a/5.0 + prev;
kp = vx * 0.036;
kp = vx / (1.0/0.036);

}

How to save code
Choices that influence code size:

1. What libraries to include (24/32 bit float or fixed point)

2. Rounding can be disabled permanently.
#def i ne DI SABLE_ROUNDI NG
#i ncl ude "nat h32f. h"

3. Optimization, currently available on division only. Note that “optimize for speed” is default. Also note
that the saving is only 5 - 7 instructions. Timing difference is up to 15-20 percent.

#define FP_OPTIMSIZE // optimze for SIZE

#define FP_OPTIM SPEED // optimze for SPEED:. default

The recommended strategy is to select a main library for the demanding math operations. Different
floating and fixed point operations should only be mixed if there is a good reason for it.

Mixing different data types is possible to save code and RAM space. For example by using a small type
in an array and a larger type for the math operations.

So, first decide what math library to include. For floating point the main decision is between the 24 bit
and the 32 bit library. If you use 32 bit operations, this can be combined with 24 (and 16) bit floating
point types to save RAM.

Automatic type conversion;
i nteger <-> float/double
i nteger <-> fixed point
fl oat <-> doubl e
fixed point <-> float/double : requires additional functions

In general, using the smallest possible data type will save code and RAM space. This must be balanced
against the extra work to analyze the program to prevent overflow and too large accumulated errors. If
there is plenty of code space in the device, and timing is no problem, then large types can be used.
Otherwise analysis is required to get optimal selections.

It is recommended to keep the number of called library functions as low as possible. Although function
selection is done automatically by the compiler, it is possible to use type casts or even make a custom
library by copying the required functions from existing libraries. All libraries are written in C. CC5X can
print a warning for each operator function that is called (option -wQ).

6.6 Inline Assembly

The CC5X compiler supports inline assembly located inside a C function. There are some restrictions
compared to general assembly. First, it is only possible to CALL other functions. Second, GOTO is

79

CC5X C Compiler B Knudsen Data

restricted to labels inside the function. If these restrictions make program design too difficult, consider
using the linker support and link C and assembly modules using MPLINK.

#asm
assenbly instructions
#endasm

Features:

e many assembly formats

* equ statements can be converted to variable definitions
» macro and conditional assembly capabilities

» call C functions and access C variables

e C style comments is possible

e optional optimization

e optional automatic bank and page updating

Note that the file inline.h is for emulating inline assembly, and should NOT be included when using real
inline assembly. The compiler does not optimize inline assembly or update the bank or page bits unless it
is instructed to do so.

Inline assembly is NOT C statements, but are executed in between the C statements. It is not
recommended to write the code like this:
if (a==b)
#asm
nop // this is not a C statenent (by definition)
#endasm
a=0; // THHS is the conditional statenent!!!

Inline assembly supports DW. This can be used to insert data or special instructions. CC5X will assume
that the data inserted are instructions, but will not interpret or know the action performed. Bank selection
bits are assumed to be undefined when finishing executing DW instructions. PCLATH bit 3 (and 4) must
remain unchanged or restored to correct value if more than one code page is available on the device.
Example use is found in file ‘startup.txt’.

#asm

DW Ox3FFF ; any data or instruction
DW /*CALL*/ 0x2000 + ADDRESS

#endasm

Assembly instructions are not case sensitive. However, variables and symbols require the right lower or
upper case on each letter.

clrw
Nop
NOP
The supported operand formats are:
k EXPR
f VAR + EXPR
f,d VAR + EXPR, D
f,b VAR + EXPR, EXPR
a LABEL or FUNCTI ON_NAME
EXPR := [EXPR OP EXPR | (EXPR) | -EXPR]
EXPR := a valid C constant expression, plus assenbly extensions

80

CC5X C Compiler

B Knudsen Data

Constant formats:
MOVLW 10
MOVLW OxFF
MOVLW 0b010001
MOVLW ' A
MOVLW . 31
MOVLW .31 + 20 - 1
MOVLW H FF'
MOVLW h' OFF'
MOVLW B' 011001'
MOVLW b' 1110. 1101'
MOVLW D' 200’
MOVLW d' 222
MOVLW MAXNUNMR 4 EXP
: MOVLW 22h

deci mal radix is default
hexadeci nmal
bi nary (C style)

a character (C style)

deci mal const ant

plus and mnus are all owed

hexadeci mal (radix 16)
bi nary (radix 2)
deci nal (radix 10)

defined by EQU or #define
NOT al | owed

Formats when loading then result into the W register:

decf ax,0
iorwf ax,w
iorwf ax, W

Formats when writing the result back to the RAM register:

decf ax

decf ax,1
iorwf ax,f
iorwf ax, F

Bit variables are accessed by the following formats:

bcf
bsf
bcf
bcf
bcf

Carry

Zero_

ax, B2 ;
ax, 1

STATUS, Carry

B2 defined by EQU or #define

Carry is a bit variable

Arrays, structures and variables larger than 1 byte can be accessed by using an offset.

clrf a32 ;
clrf a32+0
clrf a32+3
clrf tab+9 ;
coclrf tab-1 ;

uns32 a32;

/'l 4 bytes

char tab[10];
not al |l owed

Labels can start anywhere on the line:

goto LABEL4
LABEL1
- LABEL2
LABEL3:
LABEL4
nop
goto LABELZ2

nop

Functions are called directly. A single unsigned 8 bit parameter can be transferred using the W register.

nmovl w 10
call f1 ;

equi valent to

f1(10);

81

CC5X C Compiler B Knudsen Data

The ONLY way to transfer multiple parameters (and parameters different from 8 bit) is to end assembly
mode, use C syntax and restart assembly mode again.

#endasm
func(a, 10, e);
#asm

The enhanced 14 bit core allows more instructions and new formats:

ADDWFC i
SUBWB i
LSLF i
LSRF i
ASRF i
MOVLB 1
MOVLP 1

Ol—\é

=

RESET

ADDFSR | NDFO, 31
ADDFSR | NDF1, -1

MOVW ++1 NDFO
MOVI W | NDFO- -

MOVI W 1[| NDFO]
MOVI W - 2[| NDF1]

Some instructions are disabled, depending on core type:

option ; 12 bits core only
tris PORTA ; 12 bits core only
movwf OPTION ; 14 bits core only
mvwf TRISA ; 14 bits core only

The EQU statement can be used for defining constants. Assembly blocks containing EQU's only can be
put outside the functions. Note that Equ constants can only be accessed in assembly mode. Constants
defined by #define can be used both in C and assembly mode.

#asm

BO equ 0

B7 equ 7
MAXNUMR 4 EXP equ OxFF
#endasm

Equ can also be used to define variable addresses. However, the compiler does not know the difference
between an Equ address and an Equ constant until it is used by an instruction. When an Equ symbol is
used as a variable, that location is disabled for use by other variables. The symbol then changes from an
Equ symbol to a variable symbol and is made available in C mode also. There is a slight danger in this
logic. DO NOT USE a series of Equ's to define an array. If one of the locations are not read or written
directly, the compiler will not know that it is a part of an array and may use it for other purposes. Reading
and writing through FSR and INDF is not used to transform equ definitions. Therefore, define arrays by
using C syntax (or #pragma char).

82

CC5X C Compiler B Knudsen Data

/'l enable equ to variable transfornation
#pragma asnmRvar 1

Al equ 0x20

CLRF Al
;A1 is changed froman equ constant to a char variable

The following address operations are possible when the variable (structure/array) is set to a fixed address:

char tab[5] @ 0x110;
struct { char x; char y; } stx @ 0x120;
#asm

MOVLW t ab

MOVLW &t ab[1]

MOVLW LOW &t abl 2]

MOVLW HI GH &t ab[2]
MOVLW UPPER &t abl[2]
MOVLW HI GH (&t ab[2] + 2)
MOVLW HI GH (&st x.y)
MOVLW &st x. y

MOVLW &STATUS

#endasm

Comments types allowed in assembly mode:

NOP ; a conmment

NOP /1 C style coments are also valid

/*

CLRW ;

NOP /* nested C style comments are also valid */
*/

Conditional assembly is allowed. However, the C style syntax has to be used.

#i f def SYMBOLA
nop

#el se

clrw

#endi f

C style macros can contain assembly instructions, and also conditional statements. Note that the compiler
does not check the contents of a macro when it is defined.

#defi ne UUA(a, b)\
clrw

movliw a \

#if a == 10 \

nop \
#endi f \
clrf b

UUA(10, ax)
UUA(9, PORTA)

Note that labels inside a macro often need to be supplied as a parameter if the macro is used more than
once. Also note that there should always be a backslash '\' after a #endasm in a macro to avoid

83

CC5X C Compiler B Knudsen Data

error messages when this macro is expanded in the C code. This applies to all preprocessor statements
inside a macro.

#defi ne wait X(uSec, LBM \

#asm \
LBM \
NOP \
NOP \
DECFSZ uSec, 1 \
GOTO LBM \
#endasm \

wai t X(i, LL1):
wai t X(i, LL2):

Most preprocessor statements can be used in assembly mode:
#pragma return[] = "Hell o"

The compiler can optimize and perform bank and page updating in assembly mode. This does not happen
automatically, but has to be switched on in the source code. It is normally safe to switch on optimization
and bank/page updating. Instructions updating the bank and page register are removed before the
compiler insert new instructions. If the assembly contains critical timing, then the settings should be left
off, at least in local regions.

/1 default |ocal assenbly settings are b- o- p-
#pragma asm default b+ o+ // change default settings

#asm /1 using default |ocal settings
#endasm

#asm b- o- p+ /1 define local settings

#pragm asm o+ // change setting in assenbly nobde
#endasm /1 end current |ocal settings

Interpretation:
o+ : current optimzation is perforned in assenbly node

0- : no optinmization in assenbly node
b+ : current bank bit updating is perfornmed in assenbly node
b- : no bank bit update in assenbly nobde

p+ : current page bit updating is performed in assenbly node
p- : no page bit update in assenbly nopde

Note that b+ o+ p+ means that updating is performed if the current setting in C mode is on. Updating is
NOT performed if it is switched off in the C code when assembly mode starts. The command line options
-b, -u, -j will switch updating off globally. The corresponding source code settings are then ignored.

Direct coded instructions

The file “hexcodes.h” contains C macros that allow direct coding of instructions.

Note that direct coded instructions are different from inline assembly seen from the compiler. The
compiler will view the instruction codes as values only and not as instructions. All high level properties
are lost. The compiler will reset optimization, bank updating, etc. after a DW statement.

Example usage:
#i ncl ude "hexcodes. h"

84

CC5X C Compiler B Knudsen Data

// 1. In DWstatenments:

#asm

DW __ SLEEP /1 Enter sleep node
DW __ CLRF(__| NDF) /1 Clear indirectly
DW __ ANDLW 0x80) /1 W= W& 0x80;

DW _DECF(__FSR __ F) /1 Decrenent FSR
DW __ BCF(__STATUS, _ Carry) /1 Clear Carry bit
DW __ GOrQ(0) /!l Goto address O
#endasm

// 2. In cdata statenents:
#pragma cdata[1] = _ GOTQ(Ox3FF)

Generating single instructions using C statements

The file INLINE.H describes how to emulate inline assembly using C code. This allows single
instructions to be generated. Intended usage is mainly for code with critical timing.

The compiler will normally generate single instructions if the C statements are simple. Remember to
inspect the generated assembly file if the application algorithm depends upon a precisely defined
instruction sequence. The following example shows how to generate single instructions from C code.

nop(); /1 NOP

f =W /1 MOV f
W= 0; /1 CLRW

f =0; /1 CLRF f
w=1f - W /1 SUBWF f, W
f=f- W /1 SUBWF f
w=f - 1; // DECF f,W
f =f - 1; /1 DECF f
w=1f | W [T 1ORW f, W
f=f] W /1 1 ORWF f
wW=rf &W /1 ANDWF f, W
f=f &W /1 ANDWF f
w=f ~w /1 XORWF f, W
f=f~rWwW /] XORWF f
w=f + W /1 ADDWF f, W
f =f +WwW /1 ADDWF f
W= f; /1 MOVF f, W
W= f ~ 255; /] COVF f,W
f =f ~ 255; /1 COWF f
W= f + 1; /1 INCF f, W
f =1 + 1; /1 I NCF f
W= decsz(i); [// DECFSZ f,W
f = decsz(i); [// DECFSZ f
W= rr(f); /I RRF f, W
f =rr(f); /1 RRF f
W=rl(f); /[l RLF f, W
f =rl(f); /1 RLF f

W= swap(f); /1 SWAPF f, W
f = swap(f); /1 SWAPF f
W= incsz(i); [/ INCFSZ f, W
f =incsz(i); [/ INCFSZ f
b = 0; // BCF f,b

b = 1; /l BSF f,b
bt sc(b); /1 BTFSC f, b
bt ss(b); /1 BTFSS f,Db

85

CC5X C Compiler B Knudsen Data

OPTION = W /1 OPTION (MOVWWF on core 14)

sl eep(); /1 SLEEP

clrwdt (); /1 CLRWDT

TRISA = W /1 TRES f (MOVWWF on core 14)
return 5; // RETLWS5

s1(); /1 CALL si

goto X; /1 GOTO X

nop2(); /1 GOTO next address (delay 2 cycles)
W = 45; /1 MOVLW 45

W= W]| 23; /1 10RLW 23

W= W& 53; /1 ANDLW 53

W= W~n 12; /] XORLW 12

Additional for the 14 bit core:
W= 33 + W // ADDLW 33
W= 33 - W /1 SUBLW 33
return; /1 RETURN
retint(); /1 RETFIE

Additional for the enhanced 14 bit core:

W= addWFC(i); // ADDWC f, W
i = addWFC(i); // ADDWFC f
W= subWFB(i); // SUBWB f, W
i = subWrB(i); // SUBWB f
W=i << 1; !/l LSLF f,W
i =i << 1; !/l LSLF f

i =1sl(i); /'l LSLF f
W=1i > 1; /1l LSRF f, W
=0 > 1; /'l LSRF f

i = Isr(i); /] LSRF f
int Xx;

X = X >> 1; /] ASRF f,W
X = X >> 1; /1 ASRF f

x = asr(i); /'l ASRF f
BSR = 3; // MOVLB Kk
PCLATH = 5; /] MOVLP Kk
ski p(W; /1 BRW

sof t Reset () ; /1 RESET
W = *FSRO++; /1 MOVIW
W= *--FSR1; /1 MOVIW

*FSRO-- = W /1 MOVW
*++FSR1 = W /1 MOVW
FSRO += 31; /1 ADDFSR n, k

6.7 Optimizing the Code

The CC5X compiler contains an advanced code generator which is designed to generate compact code.
For example when comparing a 32 bit unsigned variable with a 32 bit constant, this normally requires 16
(or 15) instructions. When comparing a 32 bit variable with 0, this count is reduced to 6 (or 5). The code
generator detects and takes advantage of similar situations to enable compact code.

Most of the code is generated inline, even multiplication and division. However, if many similar and
demanding math operations have to be performed, then it is recommended to include a math library.

Optimized syntax
Bit toggle uses the W register to get compact code:

86

CC5X C Compiler B Knudsen Data

bit b;
b =1b; /1 MOVLW K, XORWF var
Testing multiple bits of 16 bit variables or greater:

unsl6é x;

if (x & OxFO)

if (!'(x & 0x30))

if ((x & 0xFOO) == 0x300)
if ((x & O0x7F00) < 0x4000)

Testing single bits using the '&' operator:

if (a & 0x10) /1 BTFSC/ BTFSS a, 4
if (!(a & 0x80)) /1 BTFSS/ BTFSC a, 7
if ((al6 & 0x200) == 0) // BTFSS/BTFSC al6+1, 1

Peephole optimization

Peephole optimizing is done in a separate compiler pass which removes superfluous instructions or
rewrite the code by using other instructions. This optimization can be switched off by the -u command
line option. The optimization steps are:

1) redirect goto to goto.

2) remove superfluous gotos.

3) replace goto by skip instructions.

4) replace INCF and DECF by INCFSZ and DECFSZ.

5) remove instructions that affects the zero- flag only.

6) remove superfluous updating of the page selection bits.
7) remove other superfluous instructions.

8) remove superfluous loading of the W register.

NOTE: Optimization can also be switched on or off in a local region. Please refer to the #pragma
optimize statement for more details.

; while (1) {
; if (Carry == 0) {
nm001 BTFSC status, Carry

GOTO 004 ; REDI RECTED TO nD01 (1)

, I ++]
| NCF i ; REPLACED BY | NCFSZ (4)

; if (i '=0)
MOVF i ; REMOVED (5)
BTFSS status, Zero_ ; REMOVED (4)
GOTO nD02 ; REMOVED (3)

; var ++;
I NCF var

; test += 2;

nD02 MOVLW . 2

ADDWF t est

; if (test == 0)
MOVF t est ; REMOVED (5)
BTFSS status, Zero_ ; REPLACED BY BTFSC (3)
GOTO o3 ; REMOVED (3)

; br eak;
GOTO D05

87

CC5X C Compiler B Knudsen Data

; W= var;
md03 MOVF var, W
; if (W==0)
XORLW . 0 ; REMOVED (5)
BTFSS st at us, Zero_
GOTO D04 ; REDI RECTED TO nDO01 (1)
; br eak;
GOTO nD05 ; REMOVED (7)
n004 GOTO nD01 ; REMOVED (2)
; subl();
nm05 BSF st at us, PAO
CALL subl
BCF status, PAO ; REMOVED (6)
; sub2();

BSF st atus, PAO ; REMOVED (6)
BSF st at us, PAl1

CALL sub2

BCF st at us, PAO

BCF st at us, PA1

6.8 Linker Support

IMPORTANT NOTE: Support for MPLINK has been terminated. MPLAB X 5.35 is the last version
that includes mpasmx/mplink. However, devices supported by mplink can be used with newer MPLAB X
versions if a copy of the mpasmx package is stored on the computer.

CC5X supports the relocatable assembly format defined by Microchip. This means that MPLINK can be
used to link code modules generated by CC5X, including MPASM assembly modules. There are many
details to be aware of. It is therefore recommended to read this file carefully. The important issues are
related to:

» external functions and variables
e ram bank updating

* page bit updating

» call level checking

e MPLINK script files

The command line option "-r' (or “-r2’) makes CC5X generate relocatable assembly. This file is then
assembled by MPASM and linked together with other C and assembly modules by MPLINK. This can
automated by using 'make’ to build the whole application in several stages.

NOTE that if you need the application program to be as compact as possible, then it is recommended to
use only ONE C module. Source code modularity is obtained by using many C files and include these in
the main C module by using #include.

Command line options:

-r : generate relocatable assenbly (no hex file)
-r2[=][<file.lkr>]: use separate section for interrupt
-rx : make variables static by default

External assembler options:
-x<file>: -x"C \Program Fil es\ M crochi p\ MPASM Sui t e\ mpasmni n. exe"
- X<option> : assenbler option: -X/ g (all options nmust be separate)

Assembly file options (normally not used):
-rp<N> : name on codepage 0 is PROGN>, default PROGL

88

CC5X C Compiler B Knudsen Data

-rb<N> : nane on RAM bank 0 is BANK<N>, default BANKO
-ro<N> : add offset <N> on |ocal variable block name

Using MPLINK or a single module

Currently it is best to use a single C module for several reasons. MPLINK support was mainly offered to
enable asm modules to be added.

Limitations when using MPLINK:

1. Asm mode debugging only (C source code appear as comments)

2. Multiple C modules do not allow the static local variable stack to be calculated for the whole
program, meaning that much more RAM space will be used for local variables.

3. Call level checking must be done manually

4. Computed goto will be slower because the compiler cannot check 256 byte address boundary
crossing.

5. Inefficient RAM bank updating, meaning mode code.

Reasons for using multiple modules are often:

1. Faster build: However, CC5X is incredible fast.

2. Module separation: However, sufficient module separation can be achieved by using multiple C files.
3. Asm modules: Inline ASM is supported by CC5X.

C modules can be merged into a single module and still be viewed as single modules. Such C
modules can be used in several projects without modification. The procedure is as follows:

1. Include the “separate modules” into the main module:

#i ncl ude "nodul el.c"
#i ncl ude "nodul e2.c"

Il ..

#i ncl ude "nodul eN. c"
Il ..

void main(void) { .. }

2. Each merged “module” includes the required header files. This can be header files specific for the
“module” or common header files:

#i ncl ude "header 1. h"
#i ncl ude "header 2. h"
Il ..

#i ncl ude "headerN. h"
/1

// nmodul e functions

3. If the same header file is included in more than one “module”, it will be required to prevent compiling
the same header file definitions more than once. This is done by using the following header file framing:

#i fndef _HEADER N Synbol /1 the first header file line

#defi ne _HEADER N _Synbol /1 conpile this Iine once only
1.

/1 header definitions as required

/1

#endif /1 the |l ast header file |ine

89

CC5X C Compiler B Knudsen Data

Variables and pointers

Variables defined in other module can be accessed. CC5X needs to know the type, and this is done by
adding 'extern’ in front of a variable definition.

extern char a;

All global variables that are not 'static' are made available for other modules automatically. CC5X inserts
'GLOBAL' statements in the generated assembly file.

CC5X will generate a'MOVLW LOW (var_name+<offset>)' when using the address operators
'‘&var_name'.

Global bit variables are a challenge. It is recommended to first define a char variable and then use 'bit bx
@ ch.0;". Otherwise CC5X will define a global char variable with random name. This name have the
format '_Gbit<X><X>" where <X> is a (more or less) random selected letter. This variable is reserved by
a RES statement and used in the assembly file when generating relocatable assembly.

bit bi;
bl = 0: // BCF _GbitQB+0,0

The variable file (*.var) is slightly modified when generating relocatable assembly. Note that most
addresses stated in the variable file are reallocated by MPLINK.

Option -rx will make variables static by default. This means that variables will not be visible outside the
module unless 'extern’ is added in front of the type definition. Note that option -rx requires that an extern
pointer definition need to be stated before the allocation of the pointer.

extern char *px; [// definition only, no allocation of space
char *px; /1 space is allocated for the pointer

IMPORTANT: 'const' data cannot be 'extern' because MPLINK does not support the const access
functions generated by CC5X. Identifiers with the ‘const’ modifier will not be made visible outside the
module. This also applies to struct objects with const pointers.

IMPORTANT: Allocation of pointers is slightly different when using relocatable assembly. The main
reason for this is that CC5X cannot trace how addresses are assigned to pointers between different
modules. There is no change on local and static pointers. An extern visible pointer without a size modifier
(sizel/size2) will be:

a) 16 bit if RAM alone use more than 8 bit addresses regardless of the default memory model used.

b) 16 bit if special registers need more than 8 bit addresses when the default RAM memory model is 16
bit (option -mm2 or -mr2).

c) 8 bit otherwise.

An extern visible pointer with the sizel modifier will access addresses from 0 - 255. An error is printed if
the pointer is assigned higher addresses. However, it is possible to force an extern 8 bit pointer to access
addresses 256 - 511 by a pragma statement:

extern sizel char *px;
#pragm assume *px in ranmbank 2 /1 ranmbank 2 or 3

Note that 8 bit pointers in a struct can only access addresses from 0 - 255, even if the struct is static or
local.

90

CC5X C Compiler B Knudsen Data

Enhanced core 14 and bank boundaries

Tables and structures that cross a bank boundary have to be located at predefined addresses (type table[]
@ address;). This is required in order to calculate the address correct for mapped addressing. Tables that
do not cross a bank boundary use standard address calculation and can be allocated by the linker.

Local variables

CC5X uses a different naming strategy on local variables when generating relocatable assembly. CC5X
reserves a continuous block in each ram bank (or shared bank) and use this name when accessing local
variables.

IMPORTANT RESTRICTION: The main() routine, interrupt service routines and all extern functions are
defined as independent call trees or paths. A function called from two independent call paths cannot
contain local variables or parameters because address sharing cannot be computed in advance. CC5X
detects this and generates an error message.

The names of the local RAM blocks are _LcRA, LcRB, etc. The last letter is related to the RAM bank
and the second last to the module name. Adding option -rol will for example change name _LcAA to
_LcBA. This can be used if there is a collision between local variable block defined in separate C
modules. MPLINK detects such collisions.

-ro<N> : add of fset <N> when generating |ocal variable block nane

Local variables for external available functions are allocated separately, one block for each extern
function. This often means inefficiently use of RAM. It is therefore recommended to use 'extern’ only on
those functions that have to be extern, and use few local variables in the extern functions. Also consider
using global variables.

Header files

It is recommended to make common header files that contain global definitions that are included in all C
modules. Such files can contain definitions (#define), 10 variable names, etc.

Using RAM banks
RAM bank definitions only apply to devices with RAM located in more than one bank.

Note that the RAM bank of ALL variables has to be known (defined) during compilation. Otherwise the
bank bit updating will not be correct. The bank is defined by using "#pragma rambank' between the
variable definition statements, also for ‘extern’ variables. An alternative is to use the bank type modifier
(bank0..bank3, shrBank).

#pragma ranmbank 0

char a, b;

#pragma ranbank 1

extern char arrayl[10];

#pragma ranbank -

extern char ex; /1 shared/ cormbn RAM

Bank bit updating

CC5X use an advanced algorithm to update the bank selection bits. However, it is not possible to trace
calls to external functions. Therefore, calling an external function or allowing incoming calls makes
CC5X assume that the bank bits are undefined. This often means that more code compared to the optimal
bank bit update strategy.

It is therefore recommended to only use ‘extern’ on those functions that have to be extern, and keep the
number of calls between modules to a minimum.

91

CC5X C Compiler B Knudsen Data

Functions

Functions residing in other modules can be called. Functions defined can be called from other modules
(also from assembly modules).

NOTE that ALL functions that are called from another module need an 'extern’ first. This is an extra
requirement that is optional in C. The reason is that the compiler needs to decide the strategy on bank bit
updating and local variables allocation. It is most efficient to use FEW extern functions.

extern void funcl(void); // defined in another nodule
extern void fc2(void) { } // available to all nobdul es

NOTE that extern functions can only have a single unsigned 8 bit parameter which is transferred in W.
This is because local storage information is not shared between modules. The return value cannot be
larger than 8 bit for the same reason (bit values are returned in Carry).

Supported extern function parameter types: char, uns8
Supported extern function return types: char, uns8, bit

CC5X inserts a 'GLOBAL <function>' in the generated assembly code for all external available functions.
'EXTERN <function>' is inserted for functions defined in other modules.

If the C module contains main(), then a 'goto main' is inserted in the STARTUP section.

Using code pages
Page bit updating only applies to functions with more than one code page.

The code page of all function calls have to be known (defined) during compilation. Otherwise the page
bit updating will not be correct. The page is defined by using #pragma location' or the page type modifier
for functions defined in another module. For functions defined in the current module, #pragma codepage'
can also be used.

It is recommended to define the function heading (prototypes) for all extern functions in a header file
including page information. This file should be included in all C modules.

IMPORTANT: When a module contains functions located on more than one codepage, all function
belonging to the same page must be put in sequence in the source file. This because MPASM/MPLINK
requires all object code sections to be continuous and CC5X is unable to change the definition order of
the functions.

Interrupts

CC5X requires that the interrupt function is located at address 4. Writing the interrupt service routine in C
using MPLINK will require some care. The main issue is to set up the linker script file as described later
in this file. Two options are possible:

ALTERNATIVE 1: Use the linking sequence to locate the interrupt service routine. This is done by
listing the module with the interrupt service routine FIRST in the module list used by MPLINK. This is
the important point which makes MPLINK put the interrupt service routine in the beginning of the
PROG/PROG1 logical code section (address 4). The list file generated by MPLINK should be inspected
to ensure that the interrupt routine starts at address 4. Another important point is to remove the #pragma
origin 4 when using MPLINK. This is the only difference in the C source compared to using the built in
CC5X linker (single C module).

92

CC5X C Compiler B Knudsen Data

ALTERNATIVE 2: Set up a SEPARATE logical section in the linker script file for the interrupt service
routine. This is a more robust solution. CC5X will generate a partial script file to avoid manual address
calculation. The partial script file must be included in the main script file. The setup is described in
Section The MPLINK script file on page 95.

It is also possible to design an assembly module containing the interrupt service routine. Information on
how to do this should be found in the MPASM/MPLINK documentation.

Call level checking

CC5X will normally check that the call level is not exceeded. This is only partially possible when using
MPLINK. CC5X can ONLY check the current module, NOT the whole linked application.

When calling an external function from the C code, CC5X will assume that the external call is one level
deep. This checking is sometimes enough, especially if all C code is put in one module, and the assembly
code modules are called from well known stack levels. Calling C function from assembly will require
manual analysis.

Therefore, careful verification of the call structure is required to avoid program crash when overwriting a
return value on the hardware stack (which is 2 or 8 levels deep). The compiler generated *.fcs files can
provide information for this checking.

Calls to external functions is written in the *.fcs file. External function calls are marked [EXTERN].

Computed goto

14 bit core: CC5X will always use the long format when generating code for skip(). It is not possible to
use the -GS option. The long format is 3 instructions longer than the short format.

12 hits core: All destination addresses must be located in the first 256 word half of the codepage.
Unfortunately CC5X cannot check the layout done by MPLINK. It is therefore strongly recommended to
apply some manual design rules that will prevent destination addresses to be moved into the invisible
(high) code page half. This can be done by ensuring a linking sequence that will put all modules
containing computed goto at the beginning (offset 0) of the codepage. Inspection of the generated list file
is recommended.

Recommendations when using MPLINK

1. Use as few C modules as possible because of:

a) inefficient bank bit updating between modules

b) local variable space cannot be reused between modules

c) only asingle unsigned 8 bit parameter in calls between modules
d) only 8 or 1 bit return values between modules

2. Use definition header files that are shared between modules. Include the shared definition in all C
modules to enable consistency checking.

a) function headings (prototypes). Add page information when using more than one code page:
/1 nodul el.c
extern pageO void sub(char ax);
/1 nodul e2.c
extern pagel void nmpy(void);
/1 Do not add extern to functions that are not called
/1 from ot her nodul es.
char | ocal FunctionA(void); // local function
/1 Note that it is required to use extern in the
/1 function definition when an extern prototype

93

CC5X C Compiler B Knudsen Data

// is not defined.

b) variables: add bank information
/1 nodul el.c
ext ern shrBank char b;
#defi ne ARRAY_SI ZE 10
extern bankO char array[ARRAY_SI ZE] ;
/1 nodul e3. asm
extern bankl char mulcnd, mulplr, Hbyte, L_byte;

c) constants, definitions, enumerations and type information
#defi ne Myd obal Def 1
enum { S1 = 10, S2, S3, S$4 S5 };
/1 nanes assigned to port pins
#pragma bit in @ PORTB.0
#pragm bit out @ PORTB.1

3. define bit variables to overlap with a char variable

/* extern */ char nyBits;

bit bl @nyBits.O0;

bit b2 @nyBits. 1;

/1 use 'extern char nyBits;' for global bits and
/1 put the definitions in a shared header file.
/1 Move definition 'char nyBits;' to one of the
/1 nodul es.

4. Make a linker script file according to the description stated later. Follow the guidelines when using
interrupts.

5. Set up a 'makefile’ to enable automatic (re)compilation and linking. Follow the guidelines when using
MPLAB. Edit and use the option "+reloc.inc' when compiling C modules.

6. Do the final call level checking manually

7. Update conventions in assembly functions called from C modules:

a) The bank selection bits should be updated in the beginning of assembly functions that are called from
C.

b) The page selection bits must be correct (set to the current module page) when returning.

MPASM
The linker script file must be made (or adapted) according to the description stated.

Note that MPASM will generate its own warnings and messages. These should normally be ignored.
MPASM do not know about the automatic bank bit updating and will display messages about this.
MPASM have generated the message if the asm file extension is used in the message.

Program execution tracing will always use the assembly file as source when using MPLINK. MPASM
can generate object code from assembly modules. There are some restrictions and additions when using
relocatable modules compared to using a single assembly module.

CC5X does not support the object code directly, but generates relocatable assembly that MPASM use to

generate the object file. MPASM is started from within the CC5X so that no extra command is required
(only the right command line options).

94

CC5X C Compiler B Knudsen Data

Case Sensitivity option in MPASM is by default On, and should remain On because C use case dependent
identifiers.

Example options to start MPASM at the end of compilation:
-x"C:\Program Fil es (x86)\ M crochi p\ MPLABX\ v4. 01\ npasmx\ npasnk. exe"
-x"C:\Program Fi | es\ M cr ochi p\ MPASM Sui t e\ mnpasmni n. exe"

Options starting with -X are forwarded to the assembler;
-Xl'o . generate rel ocatabl e object code
-Xl'q : assenbl er quiet node

If the CC5X error file option (-F) is missing, CC5X will read the error file generated by MPASM and
write the error and warnings found there to the screen and the output file (*.occ). The error file is then
deleted.

If the CC5X error file option (-F) is present, CC5X will write error and warnings to the error file (*.err)
and append the error and warnings generated by MPASM at the end of this file.

The MPLINK script file

MICROCHIP supplies sample linker script files for each device with the file extension ".Ikr' (look in the
MPLAB directory). When making a linker script file for a specific project, this file can be copied and
edited to suit the needs of CC5X.

The sample MPLINK script files must be changed slightly if the interrupt function is written in C. The
reason is that the interrupt function must start at address 4 when using CC5X. It could be possible to use a
vector at address 4, but this slows down interrupt response. Anyway, using a goto vector directly is not
possible when the device contains more than 2048 words of code. This is because PCLATH needs to be
saved before it can be updated.

CHANGE 1: Interrupt routine in C WITH a separate logical section. CC5X generates a partial script file
when using the -r2 (or -r2[=]<file.lkr>) command line option. This file is written if (and only if) CC5X
compiles a module with an interrupt service routine. The generated script file may look like:

CODEPAGE NAME=i ntserv START=0x4 END=0x1C
CODEPAGE NANME=pageO START=0x1D END=0x7FF

Example change in the main script file:
/| CODEPACGE ~ NAME=pageO START=0x4 END=0x7FF
| NCLUDE nodul el. | kr /1l or other script file nane
SECTI ON NAME=I SERVER ROWFi ntserv // Interrupt
CHANGE 2: Interrupt routine in C WITHOUT a separate logical section. Example change:

CODEPAGE NAME=vectors START=0x0 END=0x3 PROTECTED
/1 NEW VALUE: Aooooo.

CODEPACGE NAME=pageO START=0x4 END=0x7FF
/1 NEW VALUE: Aoooo.

CHANGE 3: If INTERRUPTS are not used, then the first code page can start at address 1. Example
change:

CCODEPAGE NAME=vectors START=0x0 END=0x0 PROTECTED
/1 NEW VALUE: Ao

95

CC5X C Compiler B Knudsen Data

CCODEPAGE NAME=pageO START=0x1 END=0x7FF
/1 NEW VALUE: Aoooo.

CHANGE 4: The 12 bit core devices need a logic section for the startup vector. Example change for the
16C57:

CCODEPAGE NAME=page3 START=0x600 END=0x7FE
/1 NEW VALUE: Aooooo.

CODEPAGE NAMVE=vectors START=0x7FF END=Ox7FF // NEW
SECTI ON NAME=STARTUP ROVkvectors /1 NEW

CHANGE 5: Certain devices require a special interrupt save sequence that needs to use certain RAM
locations (0x20 and 0xAOQ). These addresses must be made unavailable for allocation in the linker script
file. This applies to 14000, 16C63, 16C63A, 16C65, 16C65A, 16C65B, 16C73, 16C73A, 16C73B,
16C74, 16C74A, 16C74B, 16F873, 16F874 and similar devices. CC5X generates a warning when
variables are assigned to fixed addresses. Example change:

DATABANK NAME=gpr 0 START=0x21 END=0x7F
/1 NEW VALUE: TR

DATABANK NAME=gpr 1 START=0xA1l END=0xFF
/1 NEW VALUE: Ao

CHANGE 6: LOGICAL RAM sections must be added, one for each DATABANK that contains RAM
locations (not special function registers). Note that if a logical RAM section is missing, then the variables
that belong to this section will be put in the "default” section. MPLINK gives no error on missing logical
sections in the script file and the program will fail.

SECTI ON NANME=BANKO RAMEgprO // RAM bank 0O
SECTI ON NAME=BANK1 RAM=gprl1 // RAM bank 1
SECTI ON NANME=BANK2 RAMEgpr2 // RAM bank 2
SECTI ON NAME=BANK3 RAM=gpr3 // RAM bank 3
SECTI ON NAVE=SHRAM RAMEgpr nobnk // shared RAM
SECTI ON NAVE=GPRAM RAMEgprs // no RAM banks

Logical code blocks:
STARTUP startvector
| SERVER optional section for interrupt routine

PROG for devices with one codepage only
PROGL first codepage
PRO&X2
PROG3
PRO
CONFI G config word
| DLCCS i d-1ocations
Logical RAM blocks:
GPRAM devi ces w t hout RAM banks
BANKO bank 0
BANK1 bank 1
BANK2 bank 2
BANK3 bank 3
SHRAM shared/ common RAM (i f avail abl e on device)

Command line options:

96

CC5X C Compiler

B Knudsen Data

Page naming:

-rp0
-rpl

Bank naming:

-rbo0
-rbl

PROX is the
PROGL is the

BANKO i s the
BANK1 i s the

nanme
nane

nane
nane

of
of

of
of

the first
the first

the first
the first

codepage
codepage

RAM bank
RAM bank

Separate interrupt logical section (hamed ISERVER):
-r2 : use nane of current nodule (.Ikr)
-r2[=]<file.l kr> use defined file nane

Example with 3 modules
This example demonstrates the syntax only.

//***

/1 MODULEL. C

#i ncl ude "gl obdef 1. h"
#i nclude "int 16CXX. H'

#pragma origin 4

interrupt int_server(void)

{
i nt_save_registers /1 W STATUS (and PCLATH)
if (TOIF) {
/* TMRO overflow i nterrupt */
TMRO = -45;
TOIF = 0; /* reset flag */
}
if (INTF) {
/* INT interrupt */
INTF = 0; /* reset flag */
}
int _restore_registers // W STATUS (and PCLATH)
}
char a;
bit bl, b2,
voi d mai n(voi d)
{
PORTA = 0b0010;
TRI SA = 0b0001;
if (TO==1 &% PD ==1/* power up */) {
clearRAM); // set all RAMto O
a = b5;
bl = 1;
}
mul cnd = 10;
mul pl r = 20;
mpy(); // assenbly routine (denp)

97

CC5X C Compiler

B Knudsen Data

b2 = !b1;
do {
if (in == 1)
br eak;
sub(a&3);

} while (a < 200);

//**

/] MODULE2.C
#i ncl ude "gl obdef 1. h"

voi d sub(bankl char ax)

{
bankl char i; /* a local variable */
/* generate pul ses */
for (i =0; i <= ax+1; i++) {
out = 1,
nop2();
out = 0;
a ++; /'l increnent global variable
}
}

ckkkkkkhkhkkhkhkhk kA Ak hkhkhkhkhkhkkhkhkrkhkhkhkkhkdkhkhkhkhkrkhkdkrhkhkhkxkhkhhkkhhxk
’

; GLOBDEF1.H

/1 nanes assigned to port pins
#pragma bit in @ PORTA O
#pragm bit out @ PORTA.1

// nodul el.c
extern bankO char a;

/1l rmodul e3. asm
extern bankl char mulcnd, nmulplr, Hbyte, L_byte;

/1 nodul e2.c
extern pageO void sub(char ax);

/1 rmodul e3. asm
extern pageO void npy(void);

khkkhkkhkhkhkhkhhkhkhhhkhhhhhhkhhhhhhhhhhhdhhhddkhkddhkrdhkrkkdrx*x*
’

; MODULE3. ASM
#1 NCLUDE " P16F877. 1 NC'
BANK1 UDATA
mulecnd RES 1 ; 8 bit multiplicand
mulplr RES 1 ; 8 bit multiplier
H byte RES 1 ; Hi gh byte of the 16 bit result
L byte RES 1 ; Low byte of the 16 bit result
count RES 1 ; |oop counter

98

CC5X C Compiler B Knudsen Data

GLOBAL nul cnd, nulplr, Hbyte, L _byte

PROG1
npy

CODE ; pageO
GLOBAL npy
bsf STATUS, RPO ;
clrf H byte
nmovl w 8

nmovwf count
novf mulcnd, W
ref mulplr, F
btfsc STATUS, C
addwf H byte, F
rrf H byte, F
rrf L_byte, F

access bank 1

| oop

decfsz count, F
goto | oop
retlwoO

END

//**

/1 File: 16f877.1kr

LI BPATH

CODEPAGE NAME=vectors START=0x0 END=0x3 PROTECTED

/| CODEPAGE = NAME=pageO START=0x4 END=0x7FF

| NCLUDE nodul el. | kr

CODEPAGE NAME=pagel START=0x800 END=0x FFF

CODEPAGE NAME=page? START=0x1000 END=0x17FF

CODEPAGE NAME=page3 START=0x1800 END=0x 1FFF

CODEPAGE NAME=.idlocs START=0x2000 END=0x2003 PROTECTED
CODEPAGE NAME=. config START=0x2007 END=0x2007 PROTECTED
CODEPAGE NAME=eedata START=0x2100 END=0x21FF PROTECTED
DATABANK NAME=sfrO START=0x0 END=0x 1F PROTECTED
DATABANK NAME=sfr1l START=0x80 END=0x9F PROTECTED
DATABANK NAME=sfr 2 START=0x100 END=0x10F PROTECTED
DATABANK NAME=sfr 3 START=0x180 END=0x18F PROTECTED
DATABANK NAME=gpr 0 START=0x20 END=0x6F

DATABANK NAME=gpr 1 START=0xA0 END=0x EF

DATABANK NAME=gpr 2 START=0x110 END=0x16F

DATABANK NAME=gpr 3 START=0x190 END=0x 1EF

SHAREBANK NAME=gpr nobnk START=0x70 END=0x7F

SHAREBANK NAME=gpr nobnk START=0xFO END=0x FF

SHAREBANK NAME=gpr nobnk START=0x170 END=0x17F

SHAREBANK NAME=gpr nobnk START=0x1FO0 END=0x1FF

SECTI ON NAMVE=STARTUP ROMWkvectors /1l Reset vector

SECTI ON NAME=I SERVER ROWFi nt serv /1 Interrupt routine
SECTI ON NAVE=PROGL ROVEpageO /1 ROM code space - pageO
SECTI ON NAVE=PROG2 ROVEpagel /1 ROM code space - pagel
SECTI ON NAVE=PROG3 ROVEpage?2 /1 ROM code space - page2
SECTI ON NAVE=PROG4 ROVEpage3 /1 ROM code space - page3

99

CC5X C Compiler B Knudsen Data

SECTI ON NAME=lI DLOCS ROME. i dl ocs /1 1D locations
SECTI ON NAME=CONFI G = ROME. confi g /1 Configuration bits

SECTI ON NAME=DEEPROM ROMceedat a /| Data EEPROM

SECTI ON NAVE=SHRAM RAMEgpr nobnk /1 unbanked | ocations
SECTI ON NANME=BANKO RAMEgpr 0 /1 RAM bank 0

SECTI ON NAMVE=BANK1 RAM=gpr 1 /1 RAM bank 1

SECTI ON NAVE=BANK2 RAME=gpr 2 /1 RAM bank 2

SECTI ON NAME=BANK3 RAMEgpr 3 /1 RAM bank 3

//**

/1 File: nmodulel.lkr : generated by CC5X when using the -r2 option
/1 Note that -r2 nust be used instead of -r (file "reloc.inc')

CODEPAGE NAME=i ntserv START=0x4 END=0x1C
CODEPAGE NAME=pageO START=0x1D END=0x7FF

6.9 The cdata Statement
The cdata statement stores 14 bit data in program memory.

NOTE 1: cdata[] can currently not be used with relocatable assembly. When using MPLINK, such data
statements can be put in an assembly module.

NOTE 2: Constant data should normally be stored using the 'const' type modifier. However, cdata[] is
useful for storing EEPROM data, or data and instructions at fixed addresses.

NOTE 3: There is no check on validity of the inserted data or address. However, it is NOT possible to
overwrite program code and other cdata sections. The data is added at the end of the assembly and hex
file in the same order as it is defined.

NOTE 4: cdata outside legal program and EEPROM space is disabled. The error message can be changed
to a warning by using the -cd command line option. EEPROM address range is 0x2100 - Ox21FF for
legacy 14 bit core devices and 0xF000 - OxFOFF for enhanced 14 bit core devices.

SYNTAX:
#pragm cdat a[ADDRESS] = <VXS>, .., <VXS>
#pragma cdat a[] = <VXS>, .., <VXS>
#pragma cdat a. | DENTI FI ER = <VXS>, .., <VXS>

ADDRESS: 0 - Ox1FFF, 0x2100 - O0x21FF

VXS : < VALUE | EXPRESSION | STRI NG

VALUE: 0 .. Ox3FFF

EXPRESSI ON: C constant expr. (i.e. 0x1000+(3*1234))
STRING "Valid C String\r\n\0\x24\x8\ xe\ xFF\ xffi\\""

String translation: \xHH or \xH : hexadeci mal nunber
\0=>0 \1=>1 \2 => 2 \3 =>3 \4 =>4
\5=>5 \6 =>6 \7 =>7 \a => 7 \b => 8
\t =>9 \n=>10 \f => 12 \v =>11 \r => 13
\\ => the backsl ash character itself (0x5C)

\"o=> 0ttt (0x22)
\xHH or \xH : hexadeci mal nunber
"\x1Conflict" is better witten as "\x1" "Conflict"

100

CC5X C Compiler B Knudsen Data

Strings are stored as 7 bit ASCII characters (14 bit core devices). The least significant 7 bits of each code
word are filled first. Strings are aligned on word addresses for each <V XS>. However, alignment does
not occur when writing "abc" "def".

IDENTIFIER: any undefined identifier. It is converted to a macro identifier and set to the current cdata
word address. The purpose is to provide an automatic way to find the address of stored items.

Empty cdata statements can be used to set or read the current cdata address.

#pragm cdat a[ADDRESS] /1 set current cdata address
#pragma cdata. | DENTIFIER // "get" current cdata address

Only cdata within the valid code space is counted when calculating the total number of code words.
Using the cdata statement

1. Defining special startup sequences:

#i ncl ude "hexcodes. h"
#pragma cdata[0] = __ NOP
#pragm reset Vector 1 /1 goto nain at address 1

2. Restoring calibration values:

#i ncl ude "hexcodes. h"
#defi ne Reset Address Ox3FF // 16C509(A)
#pragm cdat a[Reset Address] = __ MOVLW Cal Val ue)

3. Storing packed strings and other data in flash devices (16F87X)

The cdata definitions should be put in a separate file and included in the beginning of the program. This
enables identifiers to be used in the program and checking to be performed.

#defi ne CDATA START 0x80
#pragma cdat a[CDATA START] // start of cdata bl ock
#pragma cdat a[] Ox3FFF, 0x2000, 0x1000
#pragma cdat a[] 0x100, (10<<4) + 3456,\
10, 456, 10000

#define D7(l,h) | + h*128
#defi ne D28(x) x%x4000, x/0x4000
#pragm cdata[] = D7(10,20), D28(10234543)

#pragma cdata. | DO
#pragnma cdata. | D1
#pragma cdat a. | D2

0x10, 200+3000
“Hell o worl d\ 0"
“Anot her string\r\n" “nerged”

#pragma cdata.| D TABLE = I DO, IDl, ID2 // store addresses
#pragma cdat a. CDATA END /1 end of cdata bl ock
#bragrra origin CDATA END // program code follow here

void wite(unsl6 strlD);

101

CC5X C Compiler B Knudsen Data

write(lDl);
wite(lD2);

All cdata start addresses have to be decided manually. The setup could be as follows:

cdata definitions

C functions at addresses |ower than CDATA START
/1 #pragma origin CDATA START /1 optional
#pragma ori gin CDATA END

C functions at addresses hi gher than CDATA END

The #pragma origin CDATA_START is not required, because data overlapping is detected automatically.
However, the compiler tells how many instructions are skipped for each origin statement. The cdata
words are not counted at this printout.

Statement #pragma origin CDATA_END allows functions to be stored right after the cdata area. This
origin statement is not required if all cdata are located at the end of the code space.

Preprocessor statements can be used for checking size during compilation:

#if CDATA END - CDATA START > 20
#error This is too nmuch
#endi f

Storing EEPROM data

EEPROM data can be put into the HEX file at addresses 0x2100 - Ox21FF (Enhanced 14 bit core use
0xFO000 - OXFOFF) for transfer to the internal EEPROM during programming of a device. Note that only
the lower 8 bit of the HEX value is used for each EEPROM location. The compiler does not know how
much EEPROM space a device has.

#if _ EnhancedCoreld

#defi ne EEPROM START O0xF000 /1 Enhanced 14 bit core devices
#el se

#defi ne EEPROM START 0x2100 /1 Legacy 14 bit core devices
#endi f
#pragm cdat a] EEPROM _START] /1 start of cdata bl ock

#pragma cdata[] = Ox3F, 10, 'a' /1 3 bytes EEPROM dat a
Note that strings will normally be packed into 2*7 bits when using cdata. This will not work for the
EEPROM area. It is possible to add "\0' in the strings ("a\0b\0c\0"), but it is better to use a pragma to
specify unpacked strings:

#pragm packedCdataStrings 0O

/1l Store follow ng strings unpacked

#pragma cdata[] = "Hello world!\0"

#pragm packedCdataStrings 1
/1 Store remaining strings packed

LINKER NOTE: EEPROM data must be put in an assembly module when using MPLINK.

102

CC5X C Compiler B Knudsen Data

7 DEBUGGING

Removing compilation errors is a simple task. The real challenge is to reveal the many application bugs.
ALWAYS remember to check the assembly file if the application program does not behave as expected.
Using a compiler does not remove the need for understanding assembly code.

Debugging methods

There are several ways of debugging the program:

1. Test (parts of) the program on a simulator. This allows full control of the input signals and thus exact
repetition of program execution. It is also possible to speed up testing to inspect long term behavior
and check out rare situations. How to do this is application dependent.

2. Use a hardware emulator. An emulator allows inspection and tracing of the internal program state
during execution in the normal application environment, including digital and analog electronics.

3. Insert application specific test-code and run the program on a prototype board. Then gradually
remove the extra code from the verified program parts. The key is to take small steps and restore the
program to a working state before doing the next change. The extra test code can consist of:

1) Code that produces patterns (square waves) on the output pins. This can be checked by an
oscilloscope.

2) Repetition of output sequences.

3) Extra delays or extra code to handle special situations.

The different debugging methods have their advantages and disadvantages. It can be efficient to switch
between several methods.

Compiler bugs

Compiler bugs are hard to detect, because they are not checked out until most other tests have failed.
(Silicon bugs can be even harder). Compiler bugs can often be removed by rewriting the code slightly, or,
depending on the type of bug, try:

1) #pragma optimize

2) #pragma update_FSR

3) #pragma update_RP

4) command line option: -u
5) command line option: -bu
6) command line option: -b

ALWAYS remember to report instances of compiler bugs to B Knudsen Data.

7.1 Compilation Errors

The compiler prints error messages when errors are detected. The error message is preceded by 2 lines of
source code and a marker line indicating where the compiler has located the error. The printing of source
and marker lines can be switched off by the -e command line option. The maximum number of errors
printed can also be altered. Setting the maximum to 12 lines is done by the command line option -E12.

The format of the error messages is:
Error <filenane> <line nunber>: <error nessage>

Some errors are fatal, and cause the compiler to stop immediately. Otherwise the compiling process
continues, but no output files are produced.

If there is a syntax error in a defined macro, then it may be difficult to decide what the problem actually

is. This is improved by printing extra error messages which points to the macro definition, and doing this
recursively when expanding nested macros.

103

CC5X C Compiler B Knudsen Data

NOTE: When an error is detected, the compiler deletes existing hex and assembly files produced by the
last successful compilation of the same source file.

Error and warning details

The compiler prints a short description of the error message to the output screen and to the *.occ file, but
not to the *.err file. Note that the description will not be visible when enabling the error file in MPLAB.
The *.occ file can then be opened and inspected.

-ed : do not print error details (disable)
-ew : do not print warning details (disable)
-eL : list error and warning details at the end

Some common compilation problems

* not enough variable space
Solution: Some redesign is required. The scope of local variables can be made more narrow. A better
overlapping strategy for global variables can be tried.

» the compiler is unable to generate code
Solution: Some of the C statements have to be rewritten, possibly using simpler statements.

* too much code generated

Solution: rewrite parts of the code. By checking the assembly file it may be possible to detect inefficient
code fragments. Rewriting by using the W register directly may sometimes reduce the code size.
Experience has shown that around 10% of the hex code can be removed by hand-optimizing the C code.
Optimal usage of the code pages and RAM banks is important. Note that the code reduction estimate is
compared to the initial code written.

« codepage limits are exceeded
Solution: move functions to another codepage by using the pragma codepage or location statements. It is
sometimes necessary to split a function into two separate functions.

* too deep call level

Solution: rewrite the code. The compiler will automatically reduce the call level when functions are
called once only. If there is a return array at the deepest call level, this code can be moved to the calling
function:

void sel (char i) {
Carry = 0;
W=rl(i); /* multiply by 2 */
ski p(W;
#pragm conmput edGoto 1
W= "0"; goto ENDS;
W= "1"; goto ENDS;

W= "4";
#pragm conput edGoto 0
ENDS:

/* processing continues here */

}

7.2 MPLAB Debugging Support

The CC5X compiler can be used inside the MPLAB environment (both MPLAB X and older MPLAB).
The COFF and COD file format for debugging purposes are supported. Two modes of source file
debugging are available:

104

CC5X C Compiler B Knudsen Data

a) Using the C source files (COFF and COD).

b) Using the generated assembly file as the source file (COD only). COFF file debugging in this mode
can be supported by generating an assembly file and send it to MPASM in order to generate the
COFF debugging file. The format of the assembly file can be changed in order to suit the debugging
tool. Take a look at the assembly file options. Some suggestions:

-A1+6+10 - Ami J : simulator |
-Al+6+6 - AmiJs : simulator 1|1
- A6+8+12Jt : conpact |

- A6 +8+12Jt : conpact 11

Enabling the COD-file is done by a command line option:

- CF<f i | ename>: generate COFF debugging file using C source file(s). <filename> is optional. The
asm file option is also switched on.

- CC<f i | ename>: generate COD debugging file using C source file(s). <filename> is optional. The
asm file option is also switched on.

- CA<f i | ename>: generate COD debugging file using generated assembly file as source. <filename> is
optional. The asm file option is also switched on.

Arrays:

COD FILE PROBLEM ONLY: Arrays and structures represent a slight challenge, because all variables
passed in the COD file are currently either char or bit types.

This is solved by adding new variables which appears during debugging:

char table[3]; --> table, /* offset 0 */
tabl e _el, /* offset 1 */
tabl e_e2 /* offset 2 */
struct {
char a;
char b;
} st; --> st, /[* offset O (element "a') */
st _ el /* offset 1 (element 'b') */

This means that the name of a structure element is not visible when inspecting variables in a debugger.

ICD and ICD2 debugging

ICD and ICD2 debugging requires defining a symbol before the header file is compiled to avoid that the
application use reserved resources:

a) By a command line option:
-DI CD_DEBUG or - DI CD2_DEBUG

b) By using #define in combination with #pragma chip or #include:
#define 1CD DEBUG // or |CD2_DEBUG

#pragma chip PI CLl6F877 [// or #include "16F877. H'

7.3 Assert Statements
Assert statements allows messages to be passed to the simulator, emulator, etc.

105

CC5X C Compiler B Knudsen Data

Synt ax: #pragma assert [/] <type> <text field>
[/] : optional character
<type> : a = user defined assert

e = user defined enul ator command

f = user defined printf

| =

user defined | og command

<text field>: undefined syntax, valid to the end of
the Iine. The Iine can be extended by a '\’
character |ike other preprocessor statenents.

#pragm assert /e text passed to the debugger
#pragm assert e text passed to the debugger

#pragm assert ; this assert command is ignored
NOTE 1: comments in the <text field> will not be removed, but passed to the debugger.

NOTE 2: Only ASCII characters are allowed in the assert text field. However, a backslash allows some
translation:

\0=>0, \1 =>1, \2=>2 \3=>3, \4=>14

\5 =>5 \6=>6, \7=>7, \a=>7, \b=>28

\t => 9, \n => 10, \v => 11, \f => 12, \r => 13

USE OF MACROS: Macros can be used inside assert statements with some limitations. The macro
should cover the whole text field AND the <type> identifier (or none of them). Macros limited to a part
of the text field are not translated. Macros can be used to switch on and off a group of assert statements or
to define similar assert statements.

#defi ne COVMON ASSERT a text field
#define AA /

#pragma assert COVMON_ASSERT
#pragma assert AA a text field

Macro AA can also disable a group of assert statements if writing:
#define AA ;

#define XX /a [/* this will NOT work */
#pragm assert XX causes an error nessage

7.4 Debugging in Another Environment

Testing a program larger than 500-1000 instructions can be difficult. It is possible to debug parts of the
program in the Windows/MSDOS environment. Another C compiler has to be used for this purpose.
Using another environment has many advantages, like faster debugging, additional test code, use of
printf(), use of powerful debuggers, etc. The disadvantage is that some program rewriting is required.

All low level activity, like 10 read and write, have to be handled different. Conditional compilation is
recommended. This also allows additional test code to be easily included.

#ifdef SIM

/1 simulated sequence
/1 or test code (printf statenents, etc.)

106

CC5X C Compiler B Knudsen Data

#el se
/! lowlevel PlICmcro code
#endi f

The following can be compiled and debugged without modifications:

1. General purpose RAM access

2. Bit operations (overlapping variables requires care)

3. Use of FSR and INDF (with some precautions)

4. Use of rl(), rr(), swap(), nop() and nop2(). Carry can be used together with rl() and rr(). Direct use of
Zero_should be avoided.

5. Use of the W register

The recommended sequence is to:

1. Write the program for the actual PICmicro device.

2. Continue working until it can be compiled successfully.

3. Debug low-level modules separately by writing small test programs (i.e. for keyboard handling,
displays, I1C-bus 10, RT-clocks).

4. Add the necessary SIM code and definitions to the code. Debug (parts of) the program in another
environment. Writing alternative code for the low-level modules is possible.

5. Return to the PICmicro environment and compile with SIM switched off and continue debugging
using the actual chip.

107

CC5X C Compiler B Knudsen Data

8 FILES PRODUCED

The compiler generates a hex file that can be used for programming the PICmicro devices directly. The
hex file normally contains code, data and optionally device configuration information. However, it is
possible to successfully compile a source file that contains data only. In this case the source code
typically will contain #pragma cdata statements with FLASH or EEPROM data.

The hex file is produced only there are no errors during compilation. The compiler may also produce
other files by setting some command line options:
« assembly, variable, list, function outline, debugging, preprocessor output and error files

8.1 Hex File

The default hex file format is INHX8M. The format is changed by the -f command line option. The
INHX8M, INHX8S and INHX32 formats are:

: BBaaaaTT112233...CC

BB - nunber of data words of 8 bits, max 16
aaaa - hexadeci mal address (byte-address)
TT - type :

00 : nornml objects
01 : end-of-file (: O0000001FF)
11 8 bits data word
CC - checksum - the sumof all bytes is zero.

The 16 bit format used by INHX16 is defined by:

: BBaaaaTT111122223333...CC

BB - nunber of data words of 16 bits, max 8
aaaa - hexadeci mal address (of 16 bit words)
TT - type :

00 : nornml objects
01 : end-of-file (: 0O0000001FF)
1111 - 16 bits data word
CC - checksum - the sumof all bytes is zero.

The records in the HEX file are sorted according to the address. Option -chu will disable this sorting for
backward compatibility with older compiler versions (version 3.2R and earlier).

8.2 Assembly Output File

The compiler produces a complete assembly file. This file can be used as input to an assembler. Text
from the source file is merged into the assembly file. This improves readability. VVariable names are used
throughout. A hex format directive is put into the assembly file. This can be switched off if needed. Local
variables may have the same name. The compiler will add an extension to ensure that all variable names
are unique.

The compiler will use __config and __idlocs in the generated assembly file when #pragma config is used
in the source. The old assembly format is still available by using the command line option -cfc.

Command line option -Ma will truncate all automatic generated labels in the assembly and list files. This
option is sometimes useful when comparing assembly files generated by different compiler versions.

There are many command line options which change the assembly file produced. Please note the

difference between the -a and the -A options. The -a option is needed to produce an assembly file, while
the -A option changes the contents of the assembly and list files.

108

CC5X C Compiler B Knudsen Data

The general format is -A[scHDpftmiJRbeokgN+N+N].
s: symbolic arguments are replaced by numbers
¢: no C source code is printed
H: hexadecimal numbers only
D: decimal numbers only
P: use " in front of decimal constants
f: no object format directive is printed
t: no tabulators, normal spaces only
m: single source line only
i: no source indentation, straight left margin
J: put source after instructions to achieve a compact assembly file.
R: detailed macro expansion
b: do not add rambank info to variables in the assembly file
e: do not add ',1' to instructions when result is written back to the register
o0: do not replace OPTION with OPTION_REG
k: do not convert all hexadecimal numbers (11h -> 0x11)
g: do not use PROCESSOR instead of the list directive
N+N+N: label, mnemonic and argument spacing. Default is 8+6+10.

Note that the options are CASE sensitive.

Some examples:

Defaul t : ; X++;
n001 I NCF x

-AsDJ : mD01 INCF 10 ; X++;

-Ac : mo01 I NCF x

-AJ6+8+11 : nDO01 | NCF X ; X++;

-Ai J1+6+10 : nDO1

I NCF X DX+
-Ai Js1+6+6 : nDO1

| NCF 0Ah DX+

8.3 Variable File

The variable list file contains information on the variables declared. Variables are sorted by address by
default, but this can be changed. The compiler needs the command line option -V to produce this file. The
file name is <src>.var.

The general format is -V[rnuDGg]. The additional letters allows the file contents to be adjusted:

r: only variables which are referenced in the code
n: sort variables by name

u: keep the variables unsorted

D: use decimal numbers

G: list default config settings and alternatives

g: list config setting alternatives

Variable file contents:

X B Addres Size #AC Nane
X -> . local variable
: global variable
assigned to certain address
extern variable
over | apping, directly assigned

MU Or

109

CC5X C Compiler B Knudsen Data

C : const variable
B-> - : mapped RAM (available in all banks)
0O : bank O
1 : bank 1
etc.
Addr ess -> Ox00A : file address

0x00C. 0 : bit address (file + bit nunber)

Size -> size in bytes (0 for bit)
#AC -> 12: nunber of direct accesses to the variable

Examples:
X B Address Size #AC Nane
P [-] 0x000 1 : 0: |INDF
R [-] 0x006.0 0 1. in
R[-] 0x00B 1 10: alfa
P[-] 0x00B 1 12: fixc
L [-] Ox00D 1 1: 1ok
L [0] Ox012.0 0 6: bl
G [0] Ox012.1 0 16: bx
G [0] 0x015 1 23: b

When a function is not called (unused), all its parameters and local variables are truncated to the same
location. Example:
L [-] OxOOF 1 : 16<> pm2_

Options -VG and -Vg will list the available device configuration bit symbols (config as found in the
device header file) at the end of the variable list file. Note that option -VG will list the default settings
enabled and not the actual settings for the project. The intension of the list is to provide an easy way to
copy-and-paste the config symbols into a C source file where the actual settings can be decided by simple
editing of the list. Example listing for option -VG:

/] #pragma config PWRTE = ON // PWRT enabl ed
#pragma config PWRTE = OFF // PWRT di sabl ed

Example listing for option -Vg:

ON // PWRT enabl ed
OFF // PVRT di sabl ed

/] #pragma confi g PWRTE
/I #pragma confi g PWRTE

8.4 List File

The compiler can also produce a list file. The command line option is —L or -L[<col>,<lin>]. The
maximum number of columns per line <col> and lines per page <lin> can be altered. The default setting
is -L.200,60. The contents of the list file can be changed by using the -A option.

8.5 Function Call Structure

The function call structure can be written to file <src>.fcs. This is useful for codepage optimization and
function restructuring in case of call level problems. Note that two different formats are produced; the
first is a list of functions, the second is a recursive expansion of the function call structure. The command
line option is -Q for both formats.

110

CC5X C Compiler B Knudsen Data

Format sample:

F: functionl #1 . p0 < pl
func2 . #5 : p0 -> p3 **
del ay . #2 . p0 -> p2 *
func3 : #3 : p0 -> pO

The meaning of the symbols is:

func2, delay and func3 are called from functionl
#1 : functionl is called once

#3 : func3 is called 3 times (once from functionl)
p0 <- p1 : functionl resides on page 0

p0 <- p1 : functionl is called from page 1

p0 -> p3 : call to func2 (resides on page 3)

* . one pagebit have to be updated before call

** : both pagebits have to be updated

N~ wWNE

The call structure is expanded recursively. The indentation show the nesting of the function calls in the
source. The true call level is printed at the beginning of the line. The true call level is different from the
indentation level when CALL's have been replaced by GOTO's. A mark is then printed at the end of the
line in such cases. The interrupt call level is handled automatically and checked. There is a separate
expansion for the interrupt service routine.

LO main

L1 functionl
L2 func2
L2 del ay
L2 func3

L1 functionl ..

Explanation of symbols used:

e L1:stacklevel 1 (max 2 or 8 levels). This is the REAL stack level, compensated when CALL's have
been replaced by GOTO.

e ... only the first call is fully expanded if more that one call to the same function occur inside the
same function body.

 [CALL->GOTO] : CALL replaced by GOTO in order to get more call levels

* [T-GOTO]: CALL+RETURN is replaced by GOTO to save a call level.

» [RECURSIVE] : recursive function call

8.6 Preprocessor Output File

The compiler will write the output from the preprocessor to a file (<src>.cpr) when using the -B
command line option. Preprocessor directives are either removed or simplified. Macro identifiers are
replaced by the macro contents. This file can be useful to check out macro expansion, for example when
the compiler produce an error message when nested macros are used.

The option format is -B[pims] where the additional letters allow some alternatives:
p : partial preprocessing
i :no include files
m: modify symbols
s : modify strings

Compilation will stop after preprocessing when using any of the additional letters.

111

CC5X C Compiler B Knudsen Data

9 APPLICATION NOTES

9.1 Delays

Delays are frequently used. There are various methods of generating them:

1. Instruction cycle counting
2. Use of the TMRO timer
3. Watchdog timeout for low power consumption
4. Use of variables achieves longer intervals
voi d del ay(char mllisec)
/* delays a multiple of 1 millisecond at 4 MHz */
OPTION = 2; [/* prescaler divide by 8 */
do {
TMRO = 0;
clrwdt(); /* only if necessary */
while (TMRO < 125) /[* 125 * 8 = 1000 */
} while (-- nillisec > 0):
}

voi d del ayl0(char n)

/*Delays a nultiple of 10 millisec.
Cock : 4 Mz => period T = 0.25 m crosec.
DEFINNTION. 1 is = 1 instruction cycle
error: 0.16 percent

*/
{
char i;
OPTION = 7,
do {
clrwdt (); /* only if necessary */
i = TMRO + 39; /* 256 us * 39 = 10 ms */
while (i !'= TMRO)
} while (--n > 0);
}
voi d _del aylO(char x)
/*
Delays a multiple of 10 nmillisec.

Clock : 32768 Hz => period T = 30.518 i crosec.
DEFINNTION. 1 is = 1 instruction cycle

=4 * T = 122 mcrosec

10 me = 82 is (81.92) => error: 0.1 percent

*/
{
char i;
do {
i = 26; [* 2 is */
do
i =i - 1;
while (i > 0); /* 26 * 3 - 1 =77 1is */

112

CC5X C Compiler B Knudsen Data

} while (--x > 0); /* 3is *
}

char counter;
voi d mai n(voi d)
if (TO==1) {

/* power up or MCLR */
PORTA = 0; /* write output latch first */

TRI SA = 0; /* all outputs */
TRISB = OxFF; /* all inputs */
}
el se {
/* wat chdog wakeup */
counter -= 1;

if (counter > 0) {
OPTION = 0x0B; /* WDT divide by 16 */
sleep(); /* waiting 16 * 18 nms =
288 ms = 0.288 seconds */
}

}
del ay(100); /* 100 millisec */
[* */

del ay10(100): /* 1 second */

[* ..

counter = 7; [* 7*0.288ns = 2000 nms */

OPTION = 0x0B; /* 0 1011 : WDOT divide by 16 */

/* sleep(); waiting 16*18 ms = 0.288 seconds */
} /* total of 2 seconds, |ow power consunption */

9.2 Computed Goto

Computed goto is a compact and elegant way of implementing a multi-selection. It can also be used for
storing a table of constants. However, the ‘const’ type modifier is normally the best way to store constant
data in program memory.

WARNING: Designing computed goto's of types not described in this section may fail. The generated
assembly file will then have to be studied carefully because optimization and updating of the bank
selection bits can be wrong.

The 12 bit core requires that all destinations of the computed goto are within the first half code page. The
14 bit core requires that PCLATH is correctly updated before loading PCL. The compiler can do ALL
updating and checking automatically. Study the following code samples.

char subO(char i)

{

skip(i); /1 junps 'i' instructions forward
#pragma return[] = "Hello world"
#pragma return[] = 10 "nmore text" 0 1 2 3 OxFF

/* This is a safe and position-i ndependent nethod
of coding return arrays or |ookup constant
tables. It works for all PICnicro devices. The
conpi l er handl es all checki ng and code
generation issues. It is possible to use return
arrays |ike above or any C statenents. */

113

CC5X C Compiler B Knudsen Data

return 110;
return Ox2F;
}
char subOl(char W
ski p(W; /1 using Wsaves one instruction
#pragma return[] = "Sinple, isn't it" 0O

/* skip(W is allowed on the 12 bit core and for
the first 256 addresses of the 14 bit core */

}

Built in skip() function for computed goto

The skip() function also allow a 16 bit parameter. When using an 8 bit parameter, carry is automatically
generated (3 code words extra) if the table cross a 256 word address boundary. Carry is always inserted
when generating relocatable assembly. Options available:

-GW : dynamic selected skip() format, warning on long format (default)
-GD : dynamic selected skip() format

-GS : always short skip() format (error if boundary is crossed)

-GL : always long skip() format

When using the -GS option, CC5X will generate an error if the table cross a 256 word code address
boundary. The short format enables most compact code, but requires manually moving the table in the
source code if the error is produced.

Origin alignment

It is possible to use #pragma origin to ensure that a computed goto inside a function does not cross a 256
word address boundary. However, this may require many changes during program development. An
alternative is to use #pragma alignLsbOrigin to automatically align the least significant byte of the origin
address. Note that this alignment is not possible when using relocatable assembly, and also that it does
not apply to the 12 bit core.

Example: A function contains a computed goto. After inspecting the generated list file, there are 16
instructions between the function start and the first destination address (offset 0) right after the ADDWF
PCL,0 instruction that perform the computed goto. The last destination address (offset 10) resides 10
instructions after the first destination. A fast a compact computed goto requires that the first and last
destination resides on the same “byte page” (i.e. (address & 0xFF00) are identical for the two addresses).
This is achieved with the statement:

#pragma alignLsbOrigin -16 to 255 — 10 — 16

The alignment pragma statement is not critical. The compiler will generate an error (option -GS) or a
warning (-GW) if the computed goto cross a boundary because of a wrong alignment. An easier approach
is to align the LSB to a certain value (as long as program size is not critical).

#pragma al i gnLsbOrigin O /1 align on LSB = 0
#pragma alignLsbOrigin 0 to 190 /1l [-255 .. 255]
#pragm al i gnLsbOrigin -100 to 10

Computed goto regions

The compiler enters a goto region when skip() is detected. In this region optimization is slightly changed,
and some address checks are made. The goto region normally ends where the function ends.

114

CC5X C Compiler

B Knudsen Data

A goto region can also be started by a pragma statement:
#pragm conput edGoto 1 /1 start c-goto region
/1 useful if PCL is witten directly

A goto region can also be stopped by a pragma statement:
#pragm conputedGoto 0 // end of c-goto region
/* recomrended if the function contains code
bel ow the goto region, for instance when the
tabl e consists of an array of goto
statements (exanples follow later). */

Computed Goto Regions affects:

1. Optimization

2. Register bank bit updating (RP0/1, FSR5/6)
3. 256 word page checks

Examples

char subOl(char W
{

/* The conputed goto regi on can be constructed
just as in assenbly | anguage. However, '#pragma
conput edGot o' shoul d be inserted around such a
regi on. Ot herwi se unexpected results may
occur. */

#pragm conmput edGoto 1

PCLATH = 0; // 14 bit core only

PCL += W

/* 14 bit core: REMEMBER to make sure that the
function is located within the first 256
addresses. (There is no warning on this when
"skip(W' is NOT used) */

return 'H ;
return 'e';
return '1";
return 'I|"';
return 'o';

#pragm conput edGoto O
}

/* A VERY LARGE TABLE (with nore than 256 byte)
can al so be constructed (14 bit core): */
char L_dst, H dst;

char sub02(voi d)
{
/* Hdst,L dst : index to the desired el enment,
starting fromOQO */
#defi ne CGSTART 0x100
PCLATH = CGSTART/ 256 + H dst; /1 VBB of f set
PCL = L_dst; // GLOBAL JUMP AT TH S PO NT
return W /1 dumry return, never executed

/* I MPORTANT : THI S FUNCTI ON AND THE DESTI NATI ON
ADDRESSES HAVE TO BE LOCATED I N THE SAVE 2048

115

CC5X C Compiler B Knudsen Data

WORD CODEPACGE. OTHERW SE PCLATH W LL NOT BE
CORRECT ON RETURN */

}

#pragma origin CGSTART // the starting point
/* The origin statement is the best way to
set the starting point of the large return
table. The address should be defined by a
'#define' statenent, because it then can
be safely changed wi thout nultiple updating. */

char sub02r (voi d)

{
#pragma conput edGoto 2 /1l start of large table
#pragma return[] = "ALFA"
#pragma return[] = 0x10 Ox11
}

#pragma origin 0x0320

/* using an origin statenent after a large return
table is useful to check the number of return
instructions generated. In this case, there
shoul d be 0x320-0x100=0x250=544 instructions.
If not, any differences will be reported by
the conpiler, either as an error, or as a
nmessage. */

voi d sub3(char s)
{
/* the next statenments could also be witten as
a switch statenent, but this solution is
fastest and nost conpact. */

if (s >= 3)
goto Default;
skip(s);
goto CaseO
goto Casel;
goto Last Case;
#pragm conputedGoto O // end of c-goto region

CaseO:
/* user statenents */
return;

Casel:

Last Case:
/* user statenents */
return;

Def aul t:
/* user statenents */
return;

}

voi d sub4(char s)

{
/* this solution can be used if very fast execution is inportant
and a fixed nunber of instructions (2/4/8/..) is executed at

116

CC5X C Compiler B Knudsen Data

each selection. Please note that extra statenents have to be

inserted to fill up enpty space between each case. */

if (s >= 10)

got o END;
Carry = 0;
s =rl(s); /* multiply by 2 */
s =rl(s); /* multiply by 2 */
skip(s);

/] execute 4 instructions at each sel ection

Case0: nop(); nop(); nop(); return;

Casel: nop(); nop(); nop(); return;

Case2: nop(); nop(); nop(); return;

Case3: nop(); nop(); nop(); return;

Case4: nop(); nop(); nop(); return;

Case5: nop(); nop(); nop(); goto END
Case6: nop(); nop(); nop(); goto END
Case7: nop(); nop(); nop(); goto END;
Case8: nop(); nop(); nop(); goto END;
Case9: nop(); nop(); nop(); goto END;
#pragm conputedGoto O /* end of region */

END:

/*
NOTE: "goto END' is necessary for ALL cases if the function is
call ed from anot her codepage. NOTE: '#pragma optimize ..' can
be useful in this situation. If the call level is too deep, note

that the conpiler can only replace CALL by GOTO if there are few

"return constant' inside the function.
*/
}

9.3 The switch statement

char select(char W

switch(W {
case 1: [* XORLW 1 */
[* .. */
br eak;
case 2: /* XORLW 3 */
br eak;
case 3: [* XORLW 1 */
case 4: [* XORLW 7 */
return 4;
case 5: /* XORLW1 */
return 5;
}
return O; /* default */

}

The compiler performs a sequence of XORLW <const>. These constants are NOT the same as the

constants written in the C code. However, the produced code is correct! If more compact code is required,

then consider rewriting the switch statement as a computed goto. This is very efficient if the cases are

close to each other (i.e. 2, 3, 4,5, ..).

117

CC5X - APPENDIX

B Knudsen Data

APPENDIX

Al Using Interrupts

#pragma bit pinl @ PORTA 1
#pragma bit pin2 @ PORTA. 2

#i ncl ude "i nt 16CXX. H'

#pragma origin 4

interrupt int_server(void)

{

}

i nt_save_registers /1 W STATUS (and PCLATH)

/* 1t is reconmended to use int_save registers and
int_restore_registers on all devices for conpatibility */

/* Note 1: The Enhanced 14 bit core has hardware register
save and restore of W STATUS, BSR, FSRx and PCLATH */

/* Note 2: The Enhanced 12 bit core has hardware register
save and restore of W STATUS, BSR and FSR */

if (TOIF) {
/* TMRO overflow interrupt */
TMRO = -45;
if (pinl == 1)
pinl = O;
el se
pinl = 1;
TOIF = 0; /* reset flag */
}
if (INTF) {
/* INT interrupt */
INTF = 0; /* reset flag */
}
if (RBIF) {
/* RB port change interrupt */
W= PORTB; /* clear msmatch */
RBIF = 0; /* reset flag */
}

/*

NOTE: G E is AUTOVATI CALLY cleared on interrupt entry and set
to 1 on exit (by RETFIE). Setting AE to 1 inside the
interrupt service routine will cause nested interrupts
if an interrupt is pending. Too deep nesting may crash

t he program!!

*/

int restore_registers // W STATUS (and PCLATH)

voi d mai n(voi d)

{

118

CC5X - APPENDIX B Knudsen Data

#i fdef _16Cr1l
ADCON1 = bin(11); /* port A = digital */
#endi f
#if defined _16F873 || defined _16F874 || defined _16F876 |
defined _16F877
ADCON1 = 0b0110; // PORT Ais digital

#endi f
PORTA = 0; /* 76543210 */
TRI SA = Ob11111001;

OPTION = 0; /* prescaler divide by 2 */
TVMRO = -45; [/* 45 * 2 = 90 periods */
TOIE = 1; /* enable TMRO interrupt */
GE = 1; /* interrupts allowed */

while (1) { /* infinite loop */

pin2 = 0;
nop2(); // 2 Instruction cycles
nop(); /1 1 Instruction cycle
pin2 = 1;

}

A2 Predefined Register Names

Core 12:

char W

char I NDF, TMRO, PCL, STATUS, FSR, PORTA, PORTB;
char I NDFO, RTCC, PC;, // alternative names

char OPTION, TRISA, TRI SB

char PORTC, TRI SC;

bit Carry, DC, Zero_, PD, TO PAO0, PAl, PAZ2;

bit FSR 5, FSR 6;

Enhanced Core 12:

char W

char INDF, TMRO, PCL, STATUS, FSR, PORTA, PORTB;
char OPTION, TRI SA, TRI SB, BSR

char PORTC, TRI SC,

bit Carry, DC, Zero_, PD, TO PA0, PAl, PA2;

Core 14:

char W

char I NDF, TMRO, PCL, STATUS, FSR, PORTA, PORTB;
char I NDFO, RTCC, PC, OPTION, // alternative nanes
char OPTION REG TRISA, TRI SB;

char PCLATH, | NTCON

bit PSO, PS1, PS2, PSA, TOSE, TOCS, |NTEDG RBPU;
bit RTE, RTS;, // alternative nanes

bit Carry, DC, Zero_, PD, TO RPO, RP1l, |RP;

bit RBIF, INTF, TOIF, RBIE, |INTE, TOIE, QE;

bit RTIF, RTIE, // alternative names

bit PAO, PAl1; [/ PCLATH

\

119

CC5X - APPENDIX

B Knudsen Data

Enhanced Core 14:

char *FSRO, *FSRi;

char | NDFO, | NDF1;

char FSROL, FSROH, FSR1L, FSR1H;

char W WREG

char PCL, PCLATH, STATUS, | NTCON

bit Carry, DC, Zero_, PD, TO
A3 Assembly Instructions

Assenbly: Status: Function:

NOP - - No operation

MOV f - f =W Move Wto f

CLRW - Z W= 0; Cear W

CLRF f Z f = 0; Clear f

SUBW f,d CDCZ d=f - W Subtract Wfromf
DECF f,d Z d=f - 1; Decrenent f

IORW f,d 4 d=f | W Inclusive OR Wand f
ANDW f,d z d=f &W AND W and f

XORW f,d Z d=f »W Excl usive OR Wand f
ADDW f,d CDC,Z d=1f + W Add Wand f

MOVF f,d Z d =f; Move f

cow f,d Z d =f ~ 255; Conplenment f

INCF f,d z d =f + 1; I ncrement f

DECFSz f,d - Decrenent f, skip if zero

RRF f,d C Rotate right f through carry bit
RLF f,d C Rotate left f through carry bit
SWAPF f,d - Swap hal ves f

I NCFSz f,d - Increnment f, skip if zero

BCF f,b - f.b = 0; Bit clear f

BSF f,b - f.b = 1; Bit set f

BTFSC f,b - Bit test f, skip if clear

BTFSS f,b - Bit test f, skip if set

OPTI ON - - OPTION = W Load OPTION register
SLEEP - TO PD Go into standby node, WOT =0
CLRWDT - TO PD WDT = O; Cl ear watchdog tiner
TRIS f - Tristate port f (f5,f6,f7)

RETLW k - Return, put literal in W

CALL k - Cal | subroutine

Goro k - Go to address

MOVLW Kk - W= k; Move literal to W

| ORLW Kk Z W= W] k; Incl. ORIliteral and W
ANDLW Kk Z W= W&Kk; ANDIliteral and W
XORLW k Z W= WA" k; Excl. ORliteral and W
Additional for the 14 bit core

ADDLW kK CDCZ W=k +W Add literal to W
SUBLW k C,DCZ W=k - W Subtract Wfromliteral
RETURN - - Return from subrouti ne

RETFI E - - Return from i nterrupt

Additional for the Enhanced 14 bit core

ADDWC f,d C,DC Z
SUBWB f,d C,DC Z

d f + W+ C

= Add Wand f and Carry
d=f - W- ~C

Subtract Wfromf w th borrow

120

CC5X - APPENDIX B Knudsen Data

LSLF f,d Cz Logical shift left f
LSRF f,d Cz Logical shift right f
ASRF f,d C,Z Arithmetic shift right f
MOVLB kK - Move literal to BSR
MOVLP kK - Move literal to PCLATH
BRA k - Branch al ways
BRW - - Branch forward with WREG (PC = PC + 1 + WREQ
CALLW - - Subroutine call with WREG (PC = PCLATH: \REG)
RESET - - Sof t ware reset
MVIW mmn Z Move INDFn to W with pre inc/dec
nm Z Move INDFn to W wth post inc/dec
k[n] z Move INDFn to W | ndexed | ndirect
MOVW mm n - Move Wto INDFn, with pre inc/dec
nm - Move Wto INDFn, with post inc/dec
k[n] - Move Wto | NDFn, | ndexed |ndirect
ADDFSR n, k - Add Literal to FSRn

Additional for the Enhanced 12 bit core

MOVLB k - Move literal to BSR
RETURN - - Return from subroutine
RETFI E - - Return from i nterrupt
Note:
d =1 : destination f: DECF f o f=f -1
d =0 : destination W DECF f.W : W=f -1
f . file register 0 — 31, 0 — 127
mm : increnent ++, or decrenent --
Z : Zero bit : Z=1if result is 0
C . Carry bit
ADDW : C =1 indicates overflow
SUBWF : C =0 indicates overfl ow
RRF : C=Dbit 0 of file register f
RLF : C=Dbit 7 of file register f
DC . Digit Carry bit
ADDW : DC =1 indicates digit overflow
SUBW : DC =0 indicates digit overflow
TO : Tinmeout bit
PD : Power down bit

Instruction execution time

Most instructions execute in 4 clock cycles. The exceptions are instructions that modify the program
counter. These execute in 8 clock cycles:

* GOTOand CALL

» skip instructions when next instruction is skipped

» instructions that modify the program counter, i.e: ADDWF PCL

121

	1 INTRODUCTION
	1.1 Supported devices
	1.2 Installation and System Requirements
	Support for long file names
	User interface

	1.3 MPLAB Support
	1.4 The SETCC Utility
	1.5 Summary of Delivered Files
	1.6 Short Program Example
	1.7 Defining the PICmicro Device
	1.8 What to do next

	2 VARIABLES
	2.1 Information on RAM allocation
	2.2 Defining Variables
	Integer variables
	Floating point
	IEEE754 interoperability
	Fixed point variables
	Assigning variables to RAM addresses
	Supported type modifiers
	Local variables
	Temporary variables
	Arrays, structures and unions
	Large arrays on the Enhanced 14 bit core
	Bitfields
	Typedef

	2.3 Using RAM Banks
	The bank type modifier
	RAM bank selection bits
	Manual bank bit update regions

	2.4 Pointers
	Pointer models
	The 12 bit Core
	The 14 bit core: the IRP bit

	2.5 Const Data Support
	Storing 14 bit data
	Data of size 16 bits or more
	Code pages
	Locating Const Data
	Merging data
	Examples
	Const data stored in dedicated functions

	3 SYNTAX
	3.1 Statements
	if statement
	while statement
	for statement
	do statement
	switch statement
	break statement
	continue statement
	return statement
	goto statement

	3.2 Assignment and Conditions
	Special syntax examples
	Conditions
	Bit variables
	Multiplication, division and modulo
	Precedence of C operators
	Mixed variable sizes are allowed

	3.3 Constants
	Constant expressions
	Enumeration

	3.4 Functions
	Function return values
	Parameters in function calls
	Internal functions

	3.5 Type Cast
	3.6 Accessing Parts of a Variable
	3.7 C Extensions
	3.8 Predefined Symbols
	Extensions to the standard C keywords
	Standard C keywords used
	The sizeof operator
	Function offsetof(struct_type, struct_member)
	Automatically defined macros and symbols
	Macros __FILE__ and __LINE__
	Macros __DATE__ and __TIME__

	3.9 Upward Compatibility

	4 PREPROCESSOR DIRECTIVES
	
	#define
	Macro concatenation
	Macro stringification
	#include
	#undef
	#if
	#ifdef
	#ifndef
	#elif
	#else
	#endif
	#error
	#warning
	#message
	#pragma alignLsbOrigin <a> [to]
	#pragma asm2var 1
	#pragma assert [/] <type> <text field>
	#pragma assume *<pointer> in rambank <n>
	#pragma bit <name> @ <N.B or variable[.B]>
	#pragma cdata[ADDRESS] = <VXS>, .., <VXS>
	#pragma char <name> @ <constant or variable>
	#pragma chip [=] <device>
	#pragma codepage [=] <0,1,2,3, ..15>
	#pragma computedGoto [=] <0,1,2>
	#pragma config [/<regNr> <value>] [<id>] = <state> [, <id> = <state>]
	#pragma config_def [=] <value>
	#pragma config_reg [=] <address>
	#pragma config_reg2 [=] <address>
	#pragma data_area [=] <start_address> : <last_address>
	#pragma inlineMath <0,1>
	#pragma insertConst
	#pragma interruptSaveCheck <n,w,e>
	#pragma library <0/1>
	#pragma location [=] <0,1,2,3,.. 15, - >
	#pragma mainStack <minVarSize> @ <lowestStartAddr>
	#pragma minorStack <maxVarSize> @ <lowestStartAddr>
	#pragma optimize [=] [N:] <0,1>
	#pragma origin [=] <expression>
	#pragma packedCdataStrings <0,1>
	#pragma rambank [=] <0,1,2,3,..31, - >
	#pragma rambase [=] <n>
	#pragma ramdef <ra> : <rb> [MAPPING]
	#pragma resetVector <n>
	#pragma return[<n>] = <strings or constants>
	#pragma sharedAllocation
	#pragma stackLevels <n>
	#pragma unlockISR
	#pragma updateBank [entry | exit | default] [=] <0,1>
	#pragma update_FSR [=] <0,1>
	#pragma update_IRP [=] <0,1>
	#pragma update_PAGE [=] <0,1>
	#pragma update_RP [=] <0,1>
	#pragma user_ID_addr [=] <address>
	#pragma versionFile [<file>]
	#pragma wideConstData [<N> | p | r]

	4.2 PICmicro Configuration

	5 COMMAND LINE OPTIONS
	5.1 Options in a file
	5.2 Automatic incrementing version number in a file
	5.3 Environment Variables

	6 PROGRAM CODE
	6.1 Program Code Pages
	Another way of locating functions
	The page type modifier
	Page selection bits

	6.2 Subroutine Call Level Checking
	Stack level checking when using interrupt
	Recursive functions

	6.3 Interrupts
	6.4 Startup and Termination Code
	Clearing ALL RAM locations

	6.5 Library Support
	Math libraries
	Integer libraries
	Fixed point libraries
	Floating point libraries
	Floating point library functions
	Fast and compact inline operations
	Using prototypes and multiple code pages
	Fixed point example
	Floating point example
	How to save code

	6.6 Inline Assembly
	Direct coded instructions
	Generating single instructions using C statements

	6.7 Optimizing the Code
	Optimized syntax
	Peephole optimization

	6.8 Linker Support
	Using MPLINK or a single module
	Variables and pointers
	Enhanced core 14 and bank boundaries
	Local variables
	Header files
	Using RAM banks
	Bank bit updating
	Functions
	Using code pages
	Interrupts
	Call level checking
	Computed goto
	Recommendations when using MPLINK
	MPASM
	The MPLINK script file
	Example with 3 modules

	6.9 The cdata Statement
	Using the cdata statement
	Storing EEPROM data

	7 DEBUGGING
	7.1 Compilation Errors
	Error and warning details
	Some common compilation problems

	7.2 MPLAB Debugging Support
	ICD and ICD2 debugging

	7.3 Assert Statements
	7.4 Debugging in Another Environment

	8 FILES PRODUCED
	8.1 Hex File
	8.2 Assembly Output File
	8.3 Variable File
	8.4 List File
	8.5 Function Call Structure
	8.6 Preprocessor Output File

	9 APPLICATION NOTES
	9.1 Delays
	9.2 Computed Goto
	Built in skip() function for computed goto
	Origin alignment
	Computed goto regions
	Examples

	9.3 The switch statement

	APPENDIX
	A1 Using Interrupts
	A2 Predefined Register Names
	A3 Assembly Instructions
	Additional for the 14 bit core
	Additional for the Enhanced 14 bit core
	Additional for the Enhanced 12 bit core
	Instruction execution time

