
CC5X
C Compiler for the
PICmicro Devices

Version 3.3

User's Manual

B Knudsen Data
Trondheim - Norway

CC5X C Compiler B Knudsen Data

2

This manual and the CC5X compiler is protected by Norwegian copyright laws and thus by
corresponding copyright laws agreed internationally by mutual consent. The manual and the compiler
may not be copied, partially or as a whole without the written consent from the author. The PDF-edition
of the manual can be printed to paper for private or local use, but not for distribution. Modification of the
manual or the compiler is strongly prohibited. All rights reserved.

LICENSE AGREEMENT:
By using the CC5X compiler, you agree to be bound by this agreement. Only one person may use a
licensed CC5X compiler at the same time. If more than one person want to use the compiler for each
license, then this have to be done by some manual handshaking procedure (not electronic automated), for
instance by exchanging this manual as a permission key. You may make backup copies of the software,
and copy it to multiple computers. You may not distribute copies of the compiler to others. B Knudsen
Data assumes no responsibility for errors or defects in this manual or in the compiler. This also applies to
problems caused by such errors.

Copyright © B Knudsen Data, Trondheim, Norway, 1992 - 2006

This manual covers CC5X version 3.3 and related topics. New versions may contain changes without
prior notice.

Microchip and PICmicro are trademarks of Microchip Technology Inc., Chandler, U.S.A.

COMPILER BUG REPORTS:

The compiler has been carefully tested and debugged. It is, however, not possible to guarantee a 100 %
error free product.

If the compiler generates application code bugs, it is almost always possible to rewrite the program
slightly in order to avoid the bug. #pragma optimize can be used to avoid optimization bugs. Other
#pragma statements are also useful.

Please report cases of bad generated code and other serious program errors.

1) Investigate and describe the problem. If possible, please provide a complete C example program that
demonstrates the problem. A fragment from the generated assembly file is sometimes enough.

2) This service is intended for difficult compiler problems (not application problems).
3) Language: English
4) State the compiler version.
5) Send your report to support@bknd.com.

Document version: H

mailto:support@bknd.com

CC5X C Compiler B Knudsen Data

3

CONTENTS

1 INTRODUCTION ..7

1.1 SUPPORTED DEVICES ..8
1.2 INSTALLATION AND SYSTEM REQUIREMENTS ..8

Support for long file names ..8
User interface ...8

1.3 MPLAB SUPPORT..9
1.4 SUMMARY OF DELIVERED FILES ..9
1.5 SHORT PROGRAM EXAMPLE...10
1.6 DEFINING THE PICMICRO DEVICE..11
1.7 WHAT TO DO NEXT...12

2 VARIABLES...13

2.1 INFORMATION ON RAM ALLOCATION..13
2.2 DEFINING VARIABLES ..14

Integer variables...14
Floating point ...15
IEEE754 interoperability ...15
Fixed point variables..16
Assigning variables to RAM addresses...18
Supported type modifiers..19
Local variables ...20
Temporary variables ..21
Arrays, structures and unions...21
Bitfields...22
Typedef ...22

2.3 USING RAM BANKS...22
The bank type modifier ...23
RAM bank selection bits ...23
Local user update regions ..24

2.4 POINTERS ...24
Pointer models..25
The 12 bit Core...25
The 14 bit core: the IRP bit ..27

2.5 CONST DATA SUPPORT...28
Storing 14 bit data ..28
Data of size 16 bit or more ...29
Code pages ...29
Merging data ..29
Examples ..30

3 SYNTAX..31

3.1 STATEMENTS..31
if statement ...31
while statement ...31
for statement ...31
do statement..32
switch statement..32
break statement...32
continue statement..33
return statement..33
goto statement...33

3.2 ASSIGNMENT AND CONDITIONS ...33

CC5X C Compiler B Knudsen Data

4

Special syntax examples ...33
Conditions ..34
Bit variables ...34
Multiplication, division and modulo...35
Precedence of C operators ...35
Mixed variable sizes are allowed ...36

3.3 CONSTANTS..36
Constant expressions ..36
Enumeration ...37

3.4 FUNCTIONS...37
Function return values ...37
Parameters in function calls...37
Internal functions ...38

3.5 TYPE CAST ...38
3.6 ACCESSING PARTS OF A VARIABLE ..39
3.7 C EXTENSIONS ...40
3.8 PREDEFINED SYMBOLS...41

Automatically defined macros and symbols ...41
Macro's __DATE__ and __TIME__...42

3.9 UPWARD COMPATIBILITY...42

4 PREPROCESSOR DIRECTIVES..43

#define ..43
Macro concatenation..43
Macro stringification..43
#include ..44
#undef ...44
#if..44
#ifdef...45
#ifndef...45
#elif...45
#else..45
#endif..45
#error ...45
#warning...46
#message ..46

4.1 THE PRAGMA STATEMENT..46
#pragma alignLsbOrigin <a> [to] ...46
#pragma asm2var 1..46
#pragma assert [/] <type> <text field>...46
#pragma assume *<pointer> in rambank <n> ...46
#pragma bit <name> @ <N.B or variable[.B]> ...46
#pragma cdata[ADDRESS] = <VXS>, .., <VXS>...47
#pragma char <name> @ <constant or variable> ...47
#pragma chip [=] <device> ..47
#pragma codepage [=] <0,1,2,3> ...47
#pragma computedGoto [=] <0,1,2> ..48
#pragma config [<id>] = <state> [, <id> = <state>] ..48
#pragma config_def [=] <value>..48
#pragma config_reg2 [=] <address>..48
#pragma inlineMath <0,1>..48
#pragma interruptSaveCheck <n,w,e> ..48
#pragma library <0/1>..48
#pragma location [=] <0,1,2,3,-> ...49
#pragma mainStack <minVarSize> @ <lowestStartAddr>...49
#pragma minorStack <maxVarSize> @ <lowestStartAddr> ..49

CC5X C Compiler B Knudsen Data

5

#pragma optimize [=] [N:] <0,1>...49
#pragma origin [=] <expression>...50
#pragma packedCdataStrings <0,1>...50
#pragma rambank [=] <0,1,2,3,-> ..50
#pragma rambase [=] <n>..50
#pragma ramdef <ra> : <rb> [MAPPING]..51
#pragma resetVector <n>..51
#pragma return[<n>] = <strings or constants>...51
#pragma sharedAllocation ...51
#pragma stackLevels <n>..51
#pragma unlockISR ..52
#pragma updateBank [entry | exit | default] [=] <0,1> ..52
#pragma update_FSR [=] <0,1>...52
#pragma update_IRP [=] <0,1> ...52
#pragma update_PAGE [=] <0,1> ...52
#pragma update_RP [=] <0,1>...53
#pragma versionFile [<file>] ..53
#pragma wideConstData [<N> | p | r] ...53

4.2 PICMICRO CONFIGURATION...53

5 COMMAND LINE OPTIONS ..55

5.1 OPTIONS IN A FILE ..58
5.2 AUTOMATIC INCREMENTING VERSION NUMBER IN A FILE...58
5.3 ENVIRONMENT VARIABLES..59

6 PROGRAM CODE ..60

6.1 PROGRAM CODE PAGES..60
Another way of locating functions ..60
The page type modifier ...61
Page selection bits..61

6.2 SUBROUTINE CALL LEVEL CHECKING..61
Stack level checking when using interrupt..61
Functions shared between independent call trees ..62
Recursive functions...62

6.3 INTERRUPTS ...62
Custom interrupt save and restore ...64

6.4 STARTUP AND TERMINATION CODE ...64
Clearing ALL RAM locations ...65

6.5 LIBRARY SUPPORT ..65
Math libraries...66
Integer libraries..66
Fixed point libraries ...68
Floating point libraries ..69
Floating point library functions ...69
Fast and compact inline operations ...71
Combining inline integer math and library calls..71
Using prototypes and multiple code pages...72
Fixed point example ...73
Floating point example...73
How to save code..74

6.6 INLINE ASSEMBLY..75
Direct coded instructions ...79
Generating single instructions using C statements...79

6.7 OPTIMIZING THE CODE...81
Optimized syntax ..81
Peephole optimization ..81

CC5X C Compiler B Knudsen Data

6

6.8 LINKER SUPPORT..82
Using MPLINK or a single module ..83
Variables and pointers ...84
Local variables ...85
Header files ..85
Using RAM banks...85
Bank bit updating ...85
Functions..86
Using code pages..86
Interrupts ..86
Call level checking ...87
Computed goto ...87
Recommendations when using MPLINK ..87
MPLAB and MPASM support...88
The MPLINK script file ..89
Example with 3 modules...91

6.9 THE CDATA STATEMENT ..94
Using the cdata statement ..95
Storing EEPROM data ...96

7 DEBUGGING ...97

7.1 COMPILATION ERRORS...97
Error and warning details ..98
Some common compilation problems ...98

7.2 MPLAB DEBUGGING SUPPORT..98
ICD and ICD2 debugging ..99

7.3 ASSERT STATEMENTS...99
7.4 DEBUGGING IN ANOTHER ENVIRONMENT ..100

8 FILES PRODUCED...102

8.1 HEX FILE..102
8.2 ASSEMBLY OUTPUT FILE..102
8.3 VARIABLE FILE ..103
8.4 LIST FILE..104
8.5 FUNCTION CALL STRUCTURE ...104
8.6 PREPROCESSOR OUTPUT FILE...105

9 APPLICATION NOTES..106

9.1 DELAYS ..106
9.2 COMPUTED GOTO...107

Built in skip() function for computed goto..108
Origin alignment ..108
Computed goto regions...108
Examples ..109

9.3 THE SWITCH STATEMENT..111

APPENDIX ...112

A1 USING INTERRUPTS ..112
A2 PREDEFINED REGISTER NAMES ..113
A3 ASSEMBLY INSTRUCTIONS..113

Addition for the 14 bit core ..114
Instruction execution time ..114

CC5X C Compiler B Knudsen Data

7

1 INTRODUCTION
Welcome to the CC5X C compiler for the Microchip PICmicro family of microcontrollers. The CC5X
compiler enables programming using a subset of the C language. Assembly is no longer required. The
reason for moving to C is clear. Assembly language is generally hard to read and errors are easily
produced.

C enables the following advantages compared to assembly:
• Source code standardization
• Faster program development
• Improved source code readability
• Easier documentation
• Simplified maintenance
• Portable code

The CC5X compiler was designed to generate tight and optimized code. The optimizer automatically
squeezes the code to a minimum. It is possible to write code that compiles into single instructions, but
with C syntax. This means that the C source code can be optimized by rewriting inefficient expressions.

The design priority was not to provide full ANSI C support, but to enable best possible usage of the
limited code and RAM resources. If the compiler generated less optimal code, this would force assembly
to be used for parts of the code.

CC5X features
• Local and global variables of 8, 16, 24 and 32 bits, plus bit variables
• Efficient reuse of local variable space
• Generates tight and optimized code
• Produces binary, assembly, list, COD, error, function outline and variable files
• Automatic updating of the page selection bits
• Automatic updating of the bank selection bits
• Enhanced and compact support of bit operations, including bit functions
• Floating and fixed point math up to 32 bit
• Math libraries including functions like sin(), log(), exp(), sqrt(), etc.
• Supports standard C constant data and strings in program memory (const)
• Automatic storing of compressed 2*7 bit data in each code word if possible
• Pointer models of 8 and 16 bits, mixed sizes in same application allowed
• RAM and/or ROM pointers
• The size of single pointers can be automatically chosen by the compiler
• Linker support (MPLINK), interfaces with assembly (MPASM) modules
• Extended call level by using GOTO instead of CALL when possible
• Inserts links to "hidden" subroutines
• Access to all assembly instructions through corresponding C statements
• Inline assembly
• Lookup tables: #pragma return[] = "Hello world"
• Integrated interrupt support
• Chip configuration information in source code

Size (in bits) of the variables supported by the different compiler editions:
RED+FREE STANDARD EXTENDED

integer 8+16 8+16+24 8+16+24+32
fixed - 8+16+24 8+16+24+32
float 24 24+32 16+24+32

CC5X C Compiler B Knudsen Data

8

1.1 Supported devices
12 bit core (PIC16C5X, PIC12C50X, etc.):
• up to 2048 words of code on 1 - 4 code pages
• up to 73 byte RAM in 1 - 4 banks

14 bit core (PIC12C67X, PIC14000, PIC16CXX, etc.):
• up to 8192 words of code on 1 - 4 code pages
• up to 512 byte RAM in 1 - 4 banks

1.2 Installation and System Requirements
The CC5X compiler is available as a 16 or 32 bit application (MSDOS command line or WIN32 console
application) and runs on IBM-PC compatible machines using MSDOS or Windows 95 / 98 / me / NT /
2000 / XP).

Installing CC5X is done by first creating a directory/folder on the hard disk where the compiler files
should be located. Most application programs are found in the "Program Files" folder on the C: drive.
Create for example folder CC5X here. The compiler is normally supplied as a ZIP file. A tool like
PKUNZIP or WINZIP is required to extract the files into the compiler folder.

CC5X is now ready to compile C files. Header and C source files have to be created and edited by a
separate editor (not included), for instance in the MPLAB suite.

The CC5X files can be deleted without any un-installation procedure.

Support for long file names
CC5X (WIN32 editions) supports long file names. It is also possible to use spaces in file names and
include directory names. Equivalent include directory option formats:

-I"C:\Program Files\cc5x"
-IC:\progra~1\cc5x

Equivalent include file formats:

#include "C:\Program Files\cc5x\C file"
#include "C:\progra~1\cc5x\Cfile~1"

The alternative to long names is the truncated short format. The truncated form is decided by the file
system. The best guess consists of the 6 first characters of the long name plus ~1. The last number may be
different (~2) if the first 6 characters are equal to another name in the same directory.

MPLAB version 5 uses and displays the short format only.

User interface
The CC5X compiler is a command-line program (or a console program in the Windows environment). It
requires a list of command line options to compile a C source file and produce the required files.

Starting CC5X from Windows can be done from the Start->Run menu. Then type the full path name
including cc5x.exe (or use Browse). The list of compiler command line options are then written to the
screen. The normal way of using CC5X is to use it as a tool from an integrate environment like MPLAB.

Compiling a program (in a MSDOS window) requires a file name and command line options:

cc5x -a sample1.c <enter>

CC5X C Compiler B Knudsen Data

9

1.3 MPLAB Support
CC5X can be selected as a tool in MPLAB which offers an integrated environment including editor and
tool support (compilers, assemblers, simulators, emulators, device programmers). Compilation errors are
easily handled. MPLAB supports point-and-click to go directly to the source line that needs correction.
CC5X supports the COD file format used by MPLAB for program debugging. CC5X offers two modes of
source file debugging is available: C or assembly mode. Thus, tracing programs in MPLAB can be done
using assembly instructions or C statements. MPLAB is free, and can be downloaded from the Microchip
Internet site.

Please refer to the supplied file ‘install.txt’ for a description on how to install and use CC5X in the
MPLAB environment.

1.4 Summary of Delivered Files

CC5X.EXE : compiler

INSTALL.TXT : installation guide and MPLAB setup
INLINE.TXT : information on inline assembly syntax
DEBUG.TXT : debugging details, MPLAB support
CHIP.TXT : how to make new chip definitions
CDATA.TXT : info on the #pragma cdata statement
CONST.TXT : standard C strings and constant data
CONFIG.TXT : the chip configuration bits
STARTUP.TXT : special startup sequences
LINKER.TXT : how to link several modules (C or asm)
C-GOTO.TXT : application notes on computed goto
OPTIONS.TXT : compiler command line options
ERRATA.TXT : silicon errata issues

INT16CXX.H : interrupt header file
INLINE.H : emulating inline instructions
HEXCODES.H : direct coded instructions

CC5X.MTC : MPLAB tool configuration file
TLCC5X.INI : MPLAB tool configuration file

OP.INC : command line options in a file
RELOC.INC : options for object modules (MPLINK)

SAMPLE1.C : minimal program example
SAMPLE2.c : recommended program structure and syntax samples
SAMPLE3.c : data stored in program memory and pointers
IICBUS.C : IIC-bus interface
IIC-COM.C : IIC-bus communication
SERIAL.C : serial communication (RS232, RS485)
STATE.C : state machines
DELAY.C : implementing delays
INT16XX.C : simple interrupt example
DIV16_8.C : fast division routine
SCALING.C : compact and fast 16 bit math scaling routine

MATH.TXT : math library support
MATH16.H : 8-16 bit math library
MATH16M.H : 8-16 bit multiply, speed

CC5X C Compiler B Knudsen Data

10

1) MATH24.H : 8-24 bit math library
1) MATH24M.H : 8-24 bit multiply, speed
2) MATH32.H : 8-32 bit math library
2) MATH32M.H : 8-32 bit multiply, speed

1) MATH16X.H : 16 bit fixed point library
1) MATH24X.H : 24 bit fixed point library
2) MATH32X.H : 32 bit fixed point library

2) MATH16F.H : 16 bit floating point library
MATH24F.H : 24 bit floating point library

1) MATH32F.H : 32 bit floating point library

MATH24LB.H : 24 bit floating point functions
(log,sqrt,cos,..)

1) MATH32LB.H : 32 bit floating point functions
(log,sqrt,cos,..)

12C508.H .. 16C924.H : PICmicro header files

NEWS.TXT : recent added features
README.TXT

1) Not available on the RED and FREE editions
2) Not available on the RED, STANDARD and FREE editions

1.5 Short Program Example

/* global variables */
char a;
bit b1, b2;

/* assign names to port pins */
bit in @ PORTA.0;
bit out @ PORTA.1;

void sub(void)
{

char i; /* a local variable */

/* generate 20 pulses */
for (i = 0; i < 20; i++) {

out = 1;
nop();
out = 0;

}
}

void main(void)
{

// if (TO == 1 && PD == 1 /* power up */) {
// WARM_RESET:
// clearRAM(); // clear all RAM
// }

CC5X C Compiler B Knudsen Data

11

/* first decide the initial output level
on the output port pins, and then
define the input/output configuration.
This avoids spikes at the output pins. */

PORTA = 0b.0010; /* out = 1 */
TRISA = 0b.1111.0001; /* xxxx 0001 */

a = 9; /* value assigned to global variable */

do {
if (in == 0) /* stop if 'in' is low */

break;
sub();

} while (-- a > 0); /* 9 iterations */

// if (some condition)
// goto WARM_RESET;

/* main is terminated by a SLEEP instruction */
}

1.6 Defining the PICmicro Device
CC5X offers 3 ways to select the PICmicro device in an application:

1) By a command line option. MPLAB will generate this option automatically.

-p16C73

2) By a pragma statement in the source code. Note that the command line option will override the
selection done by #pragma chip.

#pragma chip PIC16F84

3) By using include to directly select a header file. This is not recommended because there will be an
error if the command line option is also used.

#include "16c73.h"

NOTE 1: When using a pragma statement or include file, remember to use this the beginning of the C
program so that it is compiled first. However, some preprocessor statements like #define and #if may
proceed the #include/#pragma statement.

NOTE 2: When using the command line option or the pragma statement, CC5X will use the internal
definitions for some devices. If the device is not known internally, automatic include of a header file is
started. The internal known devices are: 16C54,55,56,57,58, 61,64,65, 71,73,74, 84, 620,621,622.

NOTE 3: If the header file does not reside in the default project folder, then the path name is required.
This can be supplied by a command line option as an include folder/directory (-I<path>).

NOTE 4: New header files can be defined according to file ‘chip.txt’.

NOTE 5: ICD and ICD2 debugging requires defining a symbol before the header file is compiled to
avoid that the application use reserved resources:

CC5X C Compiler B Knudsen Data

12

 a) By a command line option:
-DICD_DEBUG or -DICD2_DEBUG

 b) By using #define in combination with #pragma chip or #include:
#define ICD_DEBUG // or ICD2_DEBUG
..
#pragma chip PIC16F877 // or #include "16F877.H"

1.7 What to do next
It is important to know the PICmicro family and the tools well. The easiest way to start is to read the
available documentation and experiment with the examples. Then move on to a simple project. Some
suggestions:
• study the supplied program samples
• compile code fragments and check out what the compiler accepts
• study the optional assembly file produced by the compiler

Note that using more than one ram bank or code page requires pragma instructions.

Typical steps when developing programs is as follows:
• describe the system, make requirements
• suggest solutions that satisfy these requirements
• write detailed code in the C language
• compile the program using the CC5X compiler
• test the program on a prototype or a simulator

Writing programs for the PICmicro microcontroller family requires careful planning. Program and RAM
space are limited, and the key question is often: Will the application code fit into the selected controller?

Important:

File ‘readme.txt’ contains information on how to write code that can be
compiled by CC5X.

CC5X C Compiler B Knudsen Data

13

2 VARIABLES
The compiler prints information on the screen when compiling. Most important are error messages, and
how much RAM and PROGRAM space the program requires. The compiler output information is also
written to file *.occ. Example:

delay.c:
Chip = 16C74
RAM: 00h : -------- -------- -------- --------
RAM: 20h : ==.***** ******** ******** ********
RAM: 40h : ******** ******** ******** ********
RAM: 60h : ******** ******** ******** ********
RAM: 80h : -------- -------- -------- --------
RAM: A0h : ******** ******** ******** ********
RAM: C0h : ******** ******** ******** ********
RAM: E0h : ******** ******** ******** ********
Optimizing - removed 11 instructions (-14 %)
File 'delay.asm'
Codepage 0 has 68 word(s) : 3 %
Codepage 1 has 0 word(s) : 0 %
File 'delay.hex'

Total of 68 instructions (1 %)

2.1 Information on RAM allocation

Priority when allocating variables:
1. Variables permanently assigned to a location
2. Local variables allocated by the compiler
3. Global variables allocated by the compiler

The compiler prints information on RAM allocation. This map is useful to check out which RAM
locations are still free. The map for the 16C57 chip may look like this:

Mapped RAM: 00h : -------- .7.-****
Bank 0 RAM: 10h : ====4==* ********
Bank 1 RAM: 30h : ..6***** ********
Bank 2 RAM: 50h : ******** ********
Bank 3 RAM: 70h : -7****** ********

Symbols:
* : free location
- : predefined or pragma variable
= : local variable(s)
. : global variable
7 : 7 free bits in this location

16C71 map:
RAM: 00h : -------- ----==== ==3.7... ********
RAM: 20h : ******** ********

Detailed information on memory allocation is written to file <src>.var when using the –V command line
option.

CC5X C Compiler B Knudsen Data

14

2.2 Defining Variables
CC5X supports integer, fixed and floating point variables. The variable sizes are 1, 8, 16, 24 and 32 bit.
The default int size is 8 bit, and long is 16 bit. Char variables are unsigned by default and thus range from
0 to 255. Note that 24 and 32 bit variables are not supported by all CC5X editions.

Math libraries may have to be included for math operations (Chapter 6.5 Library Support on page 65).

CC8E uses LOW ORDER FIRST (or little-endian) on variables. This means that the least significant byte
of a variable is assigned to the lowest address. All variables are allocated from low RAM addresses and
upwards. Each RAM location can contain 8 bit variables. Address regions used for special purpose
registers are not available for normal allocation. An error message is produced when there is no space
left.

Special purpose registers are either predefined or defined in chip-specific header files. This applies to W,
INDF, TMR0, PCL, STATUS, FSR, Carry, PD, TO, etc.

Integer variables
unsigned a8; // 8 bit unsigned
char a8; // 8 bit unsigned
unsigned long i16; // 16 bit unsigned

char varX;
char counter, L_byte, H_byte;
bit ready; // 0 or 1
bit flag, stop, semafor;

int i; // 8 bit signed
signed char sc; // 8 bit signed
long i16; // 16 bit signed

uns8 u8; // 8 bit unsigned
uns16 u16; // 16 bit unsigned
uns24 u24; // 24 bit unsigned
uns32 u32; // 32 bit unsigned

int8 s8; // 8 bit signed
int16 s16; // 16 bit signed
int24 s24; // 24 bit signed
int32 s32; // 32 bit signed

The bitfield syntax can also be used:

unsigned x : 24; // 24 bit unsigned
int y : 16; // 16 bit signed

The value range of the variables are:

TYPE SIZE MIN MAX
---- ---- --- ---
int8 1 -128 127

int16 2 -32768 32767
int24 3 -8388608 8388607
int32 4 -2147483648 2147483647

CC5X C Compiler B Knudsen Data

15

uns8 1 0 255
uns16 2 0 65535
uns24 3 0 16777215
uns32 4 0 4294967295

Floating point
The compiler supports 16, 24 and 32 bit floating point. The 32 bit floating point can be converted to and
from IEEE754 by 3 instructions (macro in math32f.h).

Supported floating point types:
float16 : 16 bit floating point
float, float24 : 24 bit floating point
double, float32 : 32 bit floating point

Format Resolution Range
16 bit 2.4 digits +/- 3.4e38, +/- 1.1e-38
24 bit 4.8 digits +/- 3.4e38, +/- 1.1e-38
32 bit 7.2 digits +/- 3.4e38, +/- 1.1e-38

Note that 16 bit floating point is intended for special use where accuracy is less important. More details
on the floating point formats is found in ‘math.txt’. Information on floating point libraries is found in
Chapter 6.5 Library Support on page 65.

Floating point exception flags
The floating point flags are accessible in the application program. At program startup the flags should be
initialized:

FpFlags = 0; // reset all flags, disable rounding
FpRounding = 1; // enable rounding

Also, after an exception is detected and handled in the application, the exception bit should be cleared so
that new exceptions can be detected. Exceptions can be ignored if this is most convenient. New
operations are not affected by old exceptions. This also enables delayed handling of exceptions. Only the
application program can clear exception flags.

char FpFlags; // contains the floating point flags

bit FpOverflow @ FpFlags.1; // fp overflow
bit FpUnderFlow @ FpFlags.2; // fp underflow
bit FpDiv0 @ FpFlags.3; // fp divide by zero
bit FpDomainError @ FpFlags.5; // domain error
bit FpRounding @ FpFlags.6; // fp rounding
// FpRounding=0: truncation
// FpRounding=1: unbiased rounding to nearest LSB

IEEE754 interoperability
The floating point format used is not equivalent to the IEEE754 standard, but the difference is very small.
The reason for using a different format is code efficiency. IEEE compatibility is needed when floating
point values are exchanged with the outside world. It may also happen that inspecting variables during
debugging requires the IEEE754 format on some emulators/debuggers. Macros for converting to and
from IEEE754 are available:

math32f.h:
// before sending a floating point value:

CC5X C Compiler B Knudsen Data

16

float32ToIEEE754(floatVar);
// change to IEEE754 (3 instr.)

// before using a floating point value received:
IEEE754ToFloat32(floatVar);

// change from IEEE754 (3 instr.)

math24f.h:
float24ToIEEE754(floatVar);

// change to IEEE754 (3 instr.)
IEEE754ToFloat24(floatVar);

// change from IEEE754 (3 instr.)

Fixed point variables
Fixed point can be used instead of floating point, mainly to save program space. Fixed point math use
formats where the decimal point is permanently set at byte boundaries. For example, fixed8_8 use one
byte for the integer part and one byte for the decimal part. Fixed point operations maps nicely to integer
operations except for multiplication and division which are supported by library functions. Information
on fixed point libraries is found in Chapter 6.5 Library Support on page 65.

fixed8_8 fx;

fx.low8 : Least significant byte, decimal part
fx.high8 : Most significant byte, integer part

MSB LSB 1/256 = 0.00390625
07 01 : 7 + 0x01*0.00390625 = 7.0039625
07 80 : 7 + 0x80*0.00390625 = 7.5
07 FF : 7 + 0xFF*0.00390625 = 7.99609375
00 00 : 0
FF 00 : -1
FF FF : -1 + 0xFF*0.00390625 = -0.0039625
7F 00 : +127
7F FF : +127 + 0xFF*0.00390625 = 127.99609375
80 00 : -128

Convention: fixed<S><I>_<D> :
<S> : 'U' : unsigned
<none>: signed
<I> : number of integer bits
<D> : number of decimal bits

Thus, fixed16_8 uses 16 bits for the integer part plus 8 bits for the decimals, a total of 24 bits. The
resolution for fixed16_8 is 1/256=0.0039 which is the lowest possible increment. This is equivalent to 2
decimal digits (actually 2.4 decimal digits).

Built in fixed point types:

Type: #bytes Range Resolution

fixed8_8 2 (1+1) -128, +127.996 0.00390625
fixed8_16 3 (1+2) -128, +127.99998 0.000015259
fixed8_24 4 (1+3) -128, +127.99999994 0.000000059605
fixed16_8 3 (2+1) -32768, +32767.996 0.00390625
fixed16_16 4 (2+2) -32768, +32767.99998 0.000015259
fixed24_8 4 (3+1) -8388608, +8388607.996 0.00390625

CC5X C Compiler B Knudsen Data

17

fixedU8_8 2 (1+1) 0, +255.996 0.00390625
fixedU8_16 3 (1+2) 0, +255.99998 0.000015259
fixedU8_24 4 (1+3) 0, +255.99999994 0.000000059605
fixedU16_8 3 (2+1) 0, +65535.996 0.00390625
fixedU16_16 4 (2+2) 0, +65535.99998 0.000015259
fixedU24_8 4 (3+1) 0, +16777215.996 0.00390625

(additional types with decimals only; no integer part)
fixed_8 1 (0+1) -0.5, +0.496 0.00390625
fixed_16 2 (0+2) -0.5, +0.49998 0.000015259
fixed_24 3 (0+3) -0.5, +0.49999994 0.000000059605
fixed_32 4 (0+4) -0.5, +0.4999999998 0.0000000002328

fixedU_8 1 (0+1) 0, +0.996 0.00390625
fixedU_16 2 (0+2) 0, +0.99998 0.000015259
fixedU_24 3 (0+3) 0, +0.99999994 0.000000059605
fixedU_32 4 (0+4) 0, +0.9999999998 0.0000000002328

To sum up:
1. All types ending on _8 have 2 correct digits after decimal point
2. All types ending on _16 have 4 correct digits after decimal point
3. All types ending on _24 have 7 correct digits after decimal point
4. All types ending on _32 have 9 correct digits after decimal point

Fixed point constants
The 32 bit floating point format is used during compilation and calculation.

fixed8_8 a = 10.24;
fixed16_8 a = 8 * 1.23;
fixed8_16 x = 2.3e-3;
fixed8_16 x = 23.45e1;
fixed8_16 x = 23.45e-2;
fixed8_16 x = 0.;
fixed8_16 x = -1.23;

Constant rounding error example:
Constant: 0.036
Variable type: fixed16_8 (1 byte for decimals)

Error calculation: 0.036*256=9.216. The byte values assigned to the
variable are simply 0,0,9. The error is (9/256-0.036)/0.036 = -0.023.
The compiler prints this normalized error as a warning.

Type conversion
The fixed point types are handled as subtypes of float. Type casts are therefore infrequently required.

Fixed point interoperability
It is recommended to stick to one fixed point format in a program. The main problem when using mixed
types is the enormous number of combinations which makes library support a challenge. However, many
mixed operations are allowed when CC5X can map the types to the built in integer code generator:

fixed8_16 a, b;
fixed_16 c;
a = b + c; // OK, code is generated directly
a = b * 10.22; // OK: library function is supplied

a = b * c; // a new user library function is required!

CC5X C Compiler B Knudsen Data

18

// a type cast can select an existing library function:
a = b * (fixed8_16)c;

Assigning variables to RAM addresses
All variables, including structures and arrays can be assigned to fixed address locations. This is useful for
assigning names to port pins. It is also possible to define overlapping variables (similar to union).
Variables can overlap parts of another variable, table or structure. Multiple levels of overlapping is
allowed. The syntax is:

<variable_definition> @ <address | (constant_expression)>;
<variable_definition> @ <variable_element>;

Examples:

char th @ 0x25;
//bit th1 @ 0x25.1; // overlap warning
bit th1 @ th.1; // no warning

char tty;
bit b0;
char io @ tty;
bit bx0 @ b0;
bit bx2b @ tty.7;
//char tui @ b0; // size exceeded
//long r @ tty; // size exceeded

char tab[5];
long tr @ tab;
struct {

long tiM;
long uu;

} ham @ tab;

char aa @ ttb[2]; // char ttb[10];
bit ab @ aa.7; // a second level of overlapping
bit bb @ ttb[1].1;

size2 char *cc @ da.a; // 'da' is a struct
char dd[3] @ da.sloi[1].pi.ncup;
uns16 ee @ fx.mid16; // float32 fx;
TypeX ii @ tab; // TypeX is a typedef struct

An expression can define the address of a variable. This makes it easier to move a collection of variables.

char tty @ (50+1-1+2);
bit tt1 @ (50+1-1+2+1).3;
bit tt2 @ (50+1-1+2+1).BX1; // enum { .., BX1, .. };

Pragma statements can also be used (limited to bit and char types):
#pragma char port @ PORTC
#pragma char varX @ 0x23
#pragma bit IOpin @ PORTA.1
#pragma bit ready @ 0x20.2
#pragma bit ready @ PA2

CC5X C Compiler B Knudsen Data

19

If the compiler detects double assignments to the same RAM location, this will cause a warning to be
printed. The warning can be avoided if the second assignment use the variable name from the first
assignment instead of the address (#pragma char var2 @ var1).

An alternative is to use the #define statement:

#define PORTX PORTC
#define ready PA2

The shadowDef type modifier allow local and global variables and function parameters to be assigned to
specific addresses without affecting normal variable allocation. The compiler will ignore the presence of
these variables when allocating global and local variable space.

shadowDef char gx70 @ 0x70; // global or local variable

The above definition allow location 0x70 to be inspected and modified through variable 'gx70'.

Function parameters can be assigned to addresses. No other variables will be assigned by the compiler to
these locations. Such manual allocation can be useful when reusing RAM locations manually.

void writeByte(char addr @ 0x70, char value @ 0x71) { .. }

This syntax is also possible on function prototypes.

Supported type modifiers
static char a; /* a global variable; known in the current module
only, or having the same name scope as local variables when used in a
local block */

extern char a; // global variable (in another module)

auto char a; // local variable
// 'auto' is normally not used

register char a; // ignored type modifier

const char a; /* ‘const’ tells that compiler that the data is not
modified. This allows global data to be put in program memory. */

volatile char a; /* ignored type modifier. Note that CC5X use the
address to automatically decide that most of the special purpose
registers are volatile */

page0 void fx(void); // fx() resides in codepage 0
// page0,page1,page2,page3

bank0 char a; // variable ‘a’ resides in RAM bank 0
// bank0,bank1,bank2,bank3
// shrBank : unbanked locations, if available

size2 char *px; // pointer px is 16 bit wide
// size1,size2

shadowDef char gx70 @ 0x70; /* a variable can be assigned to a
location without affecting normal allocation */

CC5X C Compiler B Knudsen Data

20

Local variables
Local variables are supported. The compiler performs a safe compression by checking the scope of the
variables and reusing the locations when possible. The limited RAM space in therefore used efficiently.
This feature is very useful, because deciding which variables can safely overlap is time consuming,
especially during program redesign. Function parameters are located together with local variables.

Variables should be defined in the innermost block, because this allows best reuse of RAM locations. It is
also possible to add inner blocks just to reduce the scope of the variables as shown in the following
example:

void main(void)
{

char i; /* no reuse is possible at the
outermost level of 'main' */

i = 9;

{ // an inner block is added
char a;
for (a = 0; a < 10; a++)

i += fx(PORTB,0);
}
sub(i);
{ // another inner block to enable better reuse

char b = s + 1;
int i1 = -1, i2 = 0;
// more code

}
}

Local variables may have the same name. However, the compiler adds an extension to produce an unique
name in the assembly, list and COD files. When a function is not called (defined but not in use), then all
parameters and local variables are truncated to the same (unused) location.

Local variables will reside in a single block not crossing any bank boundaries. This is a requirement
because of the overlapping/reuse performed within the local block allocated.

Using several stacks
The stack for local variables, parameters and temporary variables is normally allocated separately in each
bank and the shared RAM area. The bank is normally defined the same way as global variables through
#pragma rambank or bank type modifiers. This makes it possible to split the stack into several
independent stacks. Using a single stack is normally recommended, but sometimes this is not possible
when the stack size is too large.

The following pragma will define a single main stack. The main stack is not an additional stack, but tells
the compiler where the main stack is located (which bank).

#pragma mainStack 3 @ 0x20 // set lower main stack address

Using this pragma means that local variables, parameters and temporary variables of size 3 bytes and
larger (including tables and structures) will be stored in a single stack allocated no lower than address
0x20. Smaller variables and variables with a bank modifier will be stored according to the default/other
rules. Using size 0 means all variables including bit variables.

Note that the bank defined by #pragma rambank is ignored for variables stored in the main stack. Address
ranging from 0x20 to 0x6F/0x7F are equivalent to the bank0 type modifier.

CC5X C Compiler B Knudsen Data

21

In some cases it will be efficient to use shared RAM or a specific bank for local variables up to a certain
size. This is possible by using the following pragma:

#pragma minorStack 2 @ 0x70

In this case, local variables, parameters and temporary variables up to 2 bytes will be put in shared RAM
from address 0x70 and upward. Larger variables and variables with a bank modifier will be stored
according to the default/other rules. Using size 0 means bit variables only. This pragma can be used in
combination with the main stack. The variable size defined by the minor stack have priority over the main
stack.

The most efficient RAM usage is to use a single stack. Separation into different stacks increase total
RAM usage, and should be avoided if possible.

Temporary variables
Operations like multiplication, division, modulo division and shifts often require temporary variables.
However, the compiler needs NO PERMANENT SPACE for temporary variables.

The temporary variables are allocated the same way as local variables, but with a narrow scope. This
means that the RAM locations can be reused in other parts of the program. This is an efficient strategy
and often no extra space is required in application programs.

Arrays, structures and unions
One dimensional arrays is implemented. Note that indexed arithmetic is limited to 8 bit. Assignment is
allowed for 8, 16, 24 and 32 bit.

char t[10], i, index, x, temp;
uns16 tx[3];

tx[i] = 10000;

t[1] = t[i] * 20; // ok
t[i] = t[x] * 20; // not allowed

temp = t[x] * 20;
t[i] = temp;

Normal C structures can be defined, also nested types. Unions are allowed.

struct hh {
long a;
char b;

} vx1;

union {
struct {

char a;
int16 i;

} pp;
char x[4];
uns32 l;

} uni;

CC5X C Compiler B Knudsen Data

22

// accessing structure elements
vx1.a = -10000;
uni.x[3] = vx1.b - 10;

The equivalent of a (small) multidimensional array can be constructed by using a structure. However,
only one index can be a variable.

struct {
char e[4];
char i;

} multi[5];

multi[x].e[3] = 4;
multi[2].e[i+1] += temp;

Bitfields
Bitfields in structures are allowed. The size have to be 1, 8, 16, 24 or 32 bit.

struct bitfield {
unsigned a : 1;
bit c;
unsigned d : 32;
char aa;

} zz;

The CC5X compiler also allows the bitfield syntax to be used outside structures as a general way of
defining variable size:

int x : 24; // a 24 bit signed variable

Typedef
Typedef allows defining new type identifiers consisting of structures or other data types:

typedef struct hh HH;
HH var1;
typedef unsigned ux : 16; // equal to uns16
ux r, a, b;

2.3 Using RAM Banks
Using more than one RAM bank is done by setting the active rambank:

/* variables proceeding the first rambank statement are placed in
mapped RAM or bank 0. This is also valid for local variables and
parameters */

#pragma rambank 1

char a,b,c; /* a,b and c are located in bank 1 */
/* parameters and local variables in functions placed here are also
located in bank 1 ! */

#pragma rambank 0

char d; /* located in bank 0 */

CC5X C Compiler B Knudsen Data

23

The compiler automatically finds the first free location in the selected bank.

NOTE: Local variables and function parameters also have to be located. It may be necessary to use
#pragma rambank between some of the functions and even INSIDE a function. The recommended
strategy is to locate local variables and function parameters in mapped RAM or bank 0. Mapped RAM is
selected by:

#pragma rambank –

The bank type modifier
It is also possible to use the bank type modifier to select the RAM bank.

bank0..bank3, shrBank : can replace #pragma rambank
// shrBank is the unbanked locations, if available

bank1 char tx[3]; // tx[] is located in bank 1

The bank type modifier defines the RAM bank to locate the variable. It can locate global variables,
function parameters and local variables. The bank type modifier applies to the variable itself, but not to
the data accessed. This difference is important for pointers.

NOTE 1: The bank type modifier have higher priority than #pragma rambank.

NOTE 2: Using 'extern' makes it possible to state the variable definition several times. However, the first
definition defines the rambank, and later definitions must use the same bank.

NOTE 3: When defining a function prototype, this will normally not locate the function parameters.
However, when adding a bank type modifier to a function parameter in a prototype, this will define the
bank to be used for this variable.

If variables are located in non-existing RAM banks for a device, these variables are mapped into existing
RAM banks (bank 0). This applies to the bank type modifiers and the #pragma rambank statement.

Using RAM banks requires some planning. The optimal placement requires least code to update the bank
selection bits. Some advise when locating variables:

1. Try to locate variables which are close related to each other in the same bank.
2. Try to locate all variables accessed in the same function in the same bank.
3. Switching between bank 0 and 3, or bank 1 and 2 require more instructions than the other

combinations.
4. Use as few banks as possible. Fill bank 0 first, then bank 1, etc.
5. Remember that local variables and function parameters also may require updating of the bank

selection bits.

RAM bank selection bits
RAM and special purpose registers can be located in up to 4 banks. The 12 bit core uses bit 5 and 6 in
FSR to select the right bank. In the 14 bit core, RP0 and RP1 in the STATUS register are used for this
purpose.

The bank selection bits are automatically checked and updated by the compiler, and attempts to set or
clear these bits in the source code are removed by the compiler. This feature can be switched off which
means that correct updating has to be done in the source code.

CC5X C Compiler B Knudsen Data

24

The compiler uses global optimizing techniques to minimize the extra code needed to update the bank
selection bits. Removing all unnecessary updating is difficult. However, there should be few redundant
instructions.

The compiler inserts the following instructions:

BCF 04h,FSR_5 // 12 bit core (16C57,58,..)
BSF 04h,FSR_5 // 12 bit core (16C57,58,..)
BCF 04h,FSR_6 // 12 bit core (16C57,58,..)
BSF 04h,FSR_6 // 12 bit core (16C57,58,..)
CLRF FSR // 12 bit core (16C57,58,..)

BCF 03h,RP0 // 14 bit core
BSF 03h,RP0 // 14 bit core
BCF 03h,RP1 // 14 bit core
BSF 03h,RP1 // 14 bit core

NOTE: The compiler REMOVES all bank updating done by the user. Actually all of the above stated
instructions are removed. It is therefore possible to switch between manual and automatic updating by
setting or removing the -b command line option.

Local user update regions
The automatic updating can be switched off locally. This is done by pragma statements:

#pragma update_FSR 0 /* OFF, 12 bit core only */
#pragma update_FSR 1 /* ON, 12 bit core only */

#pragma update_RP 0 /* OFF, 14 bit core only */
#pragma update_RP 1 /* ON, 14 bit core only */

#pragma updateBank 0 /* OFF, all cores */
#pragma updateBank 1 /* ON, all cores */

These statements can be inserted anywhere, but they should surround a smallest possible region. Please
check the generated assembly code to ensure that the desired results is achieved. Another use of #pragma
updateBank is to instruct the bank update algorithm to do certain selections. Refer to Section #pragma
updateBank on page 52 for more details.

NOTE: The safest coding is to not assume any specific contents of the bank selection bits when a local
update region is started. The compiler uses complex rules to update the bank selection bits outside the
local regions. Also, all updating inside a local update region is traced to enable optimal updating when the
local update region ends.

2.4 Pointers
Single level pointers is implemented. Note that pointer arithmetic is limited to 8 bit. Assignment is
allowed for 8, 16, 24 and 32 bit.

char t[10], *p;

p = &t[1];
*p = 100;
p[2] ++;

CC5X C Compiler B Knudsen Data

25

Pointer models
Using 8 bit pointers when possible saves both code and RAM space. CC5X allows the size of all single
pointers to be decided automatically. However, pointers in structures and arrays have to be decided in
advance, by using the memory model command line options or a size type modifier. Note that the
operator ‘sizeof(pointer)’ will lock the size according to the chosen default model. Using sizeof(pointer)
is normally not required and should be avoided.

That default pointer sizes are used only when the pointer size is not chosen dynamically. The priority
when deciding the pointer size is:
1) Pointer size type modifiers
2) Automatic chosen pointer size (single pointers)
3) Pointer size chosen according to the default model

Command line options:
 -mc1 : default 'const' pointer size is 1 byte (8 bits)
 -mc2 : default 'const' pointer size is 2 bytes (16 bits)
 -mr1 : default RAM pointer size is 1 byte
 -mr2 : default RAM pointer size is 2 bytes
 -mm1 : default pointer size is 1 byte (all pointer types)
 -mm2 : default pointer size is 2 bytes (all pointer types)

Pointer size type modifiers:
• size1: pointer size is 1 byte (8 bits)
• size2: pointer size is 2 bytes (16 bits)

bank1 size2 float *pf;

The supported pointer types are:
a) 8 bit pointer to RAM. The compiler will automatically update the IRP bit if required (when RAM

space exceeds 256 bytes).
b) 16 bit pointer to RAM. This format is required only when the same pointer have to access locations

in different 256 byte RAM segments.
c) 8 bit pointer to program memory. This pointer can access up to 256 byte data.
d) 16 bit pointer to program memory. This pointer can access more than 256 byte data.
e) 8 bit pointer to RAM or program memory. This pointer can access up to 128 byte data and 128 byte

RAM. Bit 7 is used to detect RAM or program memory access. The compiler will only chose this
format if all RAM addresses loaded to the pointer is in the same bank (14 bit core).

f) 16 bit pointer to RAM or program memory. Bit 15 is used to detect RAM or program memory
access.

The 12 bit Core
Indirect RAM access on the 16C57/58/12C509 requires some care because the RAM bank selection bits
resides in the FSR register (bit 5,6). The compiler can do most of the checking and generate error
messages if required. Automatic bankbit updating can be switched off globally (-b command line option),
or locally (#pragma update_FSR 0). Most of the checking described is performed only if the automatic
bankbit updating in ON.

Reading and writing arrays is straight forward:

bank2 char a, e, t[3], s[3];

a = t[i];
s[i] = e;
s[i+3] = e;

CC5X C Compiler B Knudsen Data

26

The last three statements requires that variable e is located in mapped RAM (below 0x10) or in the same
bank as array s[]. Otherwise an error message is printed to indicate that the compiler can not update the
bank selection bits.

Pointers may need a #pragma assume statement:

#pragma rambank 3
char *px, r;
#define LTAB 5
char tab[LTAB];
#pragma assume *px in rambank 3

px = &tab[0];

*px = r;
if (++px == &tab[LTAB])

px = &tab[0];

A pointer may access more than one bank. The #pragma assume statement should NOT be used in such
cases. The only difference is that the compiler will know the contents of the FSR.5,6 when a variable in a
specific bank is accessed. Therefore, a statement like:

*pointer_to_any_rambank = e;

requires that e in located in mapped RAM (address less than 0x10).

Note that the #pragma assume statement works for single pointers (and pointers in arrays), but not for
pointers located in structures.

Arrays are often more efficient than pointers:

i = 0;
// ..
tab[i] = r;
if (++i == LTAB)

i = 0;

Direct use of INDF and FSR is also possible:

FSR = px;
INDF = i;

Variable i have to reside in mapped RAM. The compiler performs the checking when INDF is accessed.
The compiler does not try to trace the contents of FSR when it is loaded directly. Therefore, a statement
like *px = r; is normally preferred.

Using #pragma assume *px in rambank 3 also makes loading of px more restrictive. An error message is
printed if px is loaded with an address in another bank. The following cases are checked:

px = tab; // same as &tab[0]
px = &tab[0];
px = &tab[i];
px = pxx; // pxx is another pointer
px = &pxx[i];

A statement like px = &tab[i]; may fool the compiler if the value of i is too large.

CC5X C Compiler B Knudsen Data

27

If the above syntax is too restrictive, then a local update region is the solution. All rambank updating then
have to be done with C statements. Normally, local update regions requires inspection of the generated
assembly file to avoid problems.

/* these statements clears the buffer */
i = LTAB;

#pragma update_FSR 0 /* OFF */
FSR = &tab[0];
do {

INDF = 0;
FSR ++;

} while (--i > 0);
#pragma update_FSR 1 /* ON */

Without a local update region:

i = LTAB;
do

tab[i-1] = 0;
while (--i > 0);

In this example, the local update region only has a speed advantage. The same amount of instructions are
generated. Note that although no rambank updating is required inside the above local region, the compiler
does not know the contents of FSR.5,6 at the end of the region, and will therefore update these bits
afterwards.

The 14 bit core: the IRP bit
For some 14 bit core chips, rambank 2 and 3 is in use. This means that register bit IRP have to be updated
in user code when working with arrays and tables.

#pragma rambank 2
char array[50];
char x;

FSR = &array % 256 + x; // LSB of &array[x]
IRP = &array / 256; // MSB

NOTE: IRP is not updated by the compiler if INDF is used directly in the user code. Using array[x]
instead of INDF enables automatic updating of the IRP bit.

The compiler will trace all loading of pointers to decide how the IRP bit should be updated. This applies
to both 8 and 16 bit pointers.

It is also possible to use #pragma assume to state the bank directly:

bank1 char t[3];
bank3 char i, *pi, *pit;
#pragma assume *pi in rambank 3 // or rambank 2
#pragma assume *pit in rambank 1 // or rambank 0
..
pi = &i;
pit = &t[2];

CC5X C Compiler B Knudsen Data

28

An error message is printed if a pointer is loaded with an address from the wrong RAM half. Note that
rambank 0 and 1 are grouped together (the lower RAM half, 0 - 0xFF). Rambank 2 and 3 are the upper
RAM half (0x100 - 0x1FF).

Updating of IRP can be switched off locally. The compiler does not remove superfluous updating of the
IRP register. This means that IRP is updated for each pointer or table access.

An efficient strategy may be to locate (most of) the tables in upper or lower RAM (above or below
address 0x100), and do all updating of IRP in the user code. Few updates are sometimes sufficient.

#pragma update_IRP 0 /* off */
..
IRP = 1; // updated by user code
..
#pragma update_IRP 1 /* on */

2.5 Const Data Support
CC5X supports constant data stored in program memory. The C keyword 'const' tells the compiler that
these data do not change. Examples:

const char *ps = "Hello world!";
const int16 itx[] = { -10, 2 – 100, 1.34 * 1000 };
const float ftx[] = { 1.0, 33.34, 1.3e-10 };
..
t = *ps;
ps = "";
fx = ftx[i];

The implementation of constant data supports the following features:
• both 8 and 16 bit pointers to const data in the same application
• the size of single const pointers can be chosen automatically
• const pointers can access both RAM and program memory
• the compiler will not put all constant data in a single table, but rather make smaller tables if this

saves code space
• some devices supports 14 bits data (PIC16F87X). The compiler will automatically chose this format

if space can be saved. This allows very compact storage of 7 bit ASCII strings.
• duplicate strings and other data are automatically merged to save space

Recommendations:
It is recommended to use small data tables and structures. This allows the compiler to merge equal data
items and build optimal blocks of constant data.

Limitations:
1) The compiler will not initialize RAM variables on startup
2) Data items of 16 bit or more in structures with more than 256 byte data must be aligned

Storing 14 bit data
Some devices (PIC16F87X) supports 14 bits data stored in program memory. This allows compact
storage of 7 bit ASCII strings and 14 bits data. The code sequence required for accessing these bits is
longer than the code for a return table. This means that code is saved when the amount of data exceeds
40-50 bytes. The compiler will automatically chose the optimal storage format.

CC5X C Compiler B Knudsen Data

29

The 14 bit data format allows storing up to 16000 bytes of 7 bit ASCII text on a 8k device. The compiler
will use the 14 bit format when a pragma statement is used. This is normally found in the header file for
the device.

#pragma wideConstData /* 1. */
#pragma wideConstData r /* 2. */
#pragma wideConstData p /* 3. */

The device must contain one of the following special purpose registers sets:

1. EEADRH, EEADR, EEDATH, EEDATA, EEPGD, RD
2. PMDATA, PMADR, PMDATH, PMADRH, RD
3. PMDATL, PMADRL, PMDATH, PMADRH, RD

When a constant table contains less than 256 byte of data, there will be a tradeoff between speed and size.
Using a return table executes faster but requires more code when the table contains more than 40-50 bytes
of data. If speed is required, the following pragma statement defines a new limit for size optimization.

#pragma wideConstData 200 // return table limit

Data of size 16 bit or more
The compiler allows access of 8,16,24 and 32 bits data, including fixed and floating point formats. When
using arrays or structures with more than 256 byte data, single data items have to be aligned. Alignment
means that there should not be any remainder when dividing the offset with the size of the data item. This
is only a problem when defining structures containing data of different sizes.

const long tl[5] = { 10000, -10000, 0, 30000, -1 };
const uns24 th[] = { 1000000, 0xFFFFFF, 9000000 };
const int32 ti[] = { 1000000000, 0x7FFFFFFF,

-900000000 };
const fixed8_8 tf[] = { -1.1, 200.25, -100.25 };
const float tp[] = { -1.1, 200.25, 23e20 };
const double td[] = { -1.1, 200.25, 23e-30};
const float16 ts[] = { -1.1, 200.25, 23e-30};
..
l = tl[i]; // reading a long integer
d = td[x]; // reading a double float constant

Code pages
When using devices with more than one codepage, the compiler will automatically calculate the optimal
codepage for the data. The disadvantage is that the compiler will not know when a codepage is full, so the
functions still have to be moved manually between codepages to find allowed and optimal combinations.
Also, the data can be located on a specific codepage by using a page type modifier.

const page1 char tx[] = "Hello!";

Merging data
The compiler will automatically merge equal strings and sub-strings, and also other data items. Using
small tables will increase the chance of finding data items that can be merged. Note that data containing
initialized addresses (ROM and RAM) are not merged. Examples:

1. The string "world!" is identical to the last part of the string "Hello world!". It is therefore not required
to use additional storage for the first string. The compiler handles the address calculations so that
merged (or overlapping) strings are handled fully automatically. Note that the string termination '\0'

CC5X C Compiler B Knudsen Data

30

also have to be equal, otherwise merging is not possible. For example, the string "world" can not be
merged with the above strings.

2. Merging applies to all kinds of data. Data is compared byte by byte. This allows the first two of the
following tables to be merged with the last one.

const char a1[] = { 10, 20, 30 };
const char a2[] = "ab";
const char a3[] = { 5, 10, 20, 30, 'a', 'b', 0 };

Examples
A table of pointers to strings:

const struct {
const char *s;

} tb[] = {
"Hello world",
"Monday",
"",
"world" // automatically merged with first string

};

p = tb[i].s; // const char *p; char i;

t = *p++; // char t;
t = p[x]; // char x;

Note that 'const struct' is required to put the pointer array in program memory. Using 'const char *tx[];'
means that the strings resides in program memory, but the table 'tx[]' resides in RAM.

String parameters:

myfunc(“Hello”); // void myfunc(const char *str);
myfunc(&tab[i]); // char tab[20]; // string in RAM
myfunc(ctab); // const char ctab[] = “A string”;

CC5X C Compiler B Knudsen Data

31

3 SYNTAX

3.1 Statements
C statements are separated by semicolons and surrounded by block delimiters:

{ <statement>; .. <statement>; }

The typical statements are:
// if, while, for, do, switch, break, continue,
// return, goto, <assignment>, <function call>
while (1) {

k = 3;
X:

if (PORTA == 0) {
for (i = 0; i < 10; i++) {

pin_1 = 0;
do {

a = sample();
a = rr(a);
s += a;

}
while (s < 200);

}
reg -= 1;

}
if (PORTA == 4)

return 5;
else if (count == 3)

goto X;
if (PORTB.3)

break;
}

if statement
if (<condition>)

<statement>;
else if (<condition>)

<statement>;
else

<statement>;

The else if and else parts are optional.

while statement
while (<condition>)

<statement>;

while (1) { .. } // infinite loop

for statement
for (<initialization>; <condition>; <increment>)

<statement>;

CC5X C Compiler B Knudsen Data

32

initialization: legal assignment or empty
condition: legal condition or empty
increment: legal increment or assignment or empty

for (v = 0; v < 10; v++) { .. }
for (; v < 10; v++) { .. }
for (v = 0; ; v--) { .. }
for (i=0; i<5; a.b[x]+=2) { .. }

do statement
do

<statement>;
while (<condition>);

switch statement
The switch statement supports variables up to 32 bit. The generated code is more compact and executes
faster than the equivalent 'if - else if' chain.

switch (<variable>) {
case <constant1>:

<statement>; .. <statement>;
break;

case <constant2>:
<statement>; .. <statement>;
break;

..
default:

<statement>; .. <statement>;
break;

}

<variable>: all 8-32 bit integer variables including W
break: optional
default: optional, can be put in the middle of the switch statement

switch (token) {
case 2:

i += 2;
break;

case 9:
case 1:
default:

if (PORTA == 0x22)
break;

case 'P':
pin1 = 0; i -= 2;
break;

}

break statement
The ‘break;’ statement is used inside loop statements (for, while, do) to terminate the loop. It is also used
in switch statements.

CC5X C Compiler B Knudsen Data

33

while (1) {
..
if (var == 5)

break;
..

}

continue statement
The ‘continue;’ statement is used inside loop statements (for, while, do) to force the next iteration of the
loop to be executed, skipping any code in between. In while and do-while loops, the loop condition is
executed next. In for loops, the increment is processed before the loop condition.

for (i = 0; i < 10; i++) {
..
if (i == 7)

continue;
..

}

return statement
return <expression>; /* exits the current function */

return; /* no return value */
return i+1; /* return value */

goto statement
goto <label>;

Jumps to a location, forward or backward.

goto XYZ;
..
XYZ:
..

3.2 Assignment and Conditions
Basic assignment examples:

var1 = x + y;
i = x - 100;
y ^= 'A'; // y = y ^ 'A';
W |= 0x10; // W = W | 0x10;
a = b = c + 1; // multiple assignment

// operations: + - & | ^ * / % << >>

flag = 1; // set bit variable

i++; /*or*/ ++i; /*or*/ i = i + 1;
i--; /*or*/ --i; /*or*/ i = i - 1;

Special syntax examples
#define mx !a
if (!mx) ..

CC5X C Compiler B Knudsen Data

34

W = W - 3; // ADDLW 256-3
b = fx() - 3;

// Post- and pre-incrementing of pointers
char *cp;
t = *--cp;
t |= *++cp;
*cp-- = t;
t = *cp++ + 10;

// pre-incrementing of variables
t = ++b | 3;
sum(--b, 10);
t = tab[--b];

Conditions
[++ | --] <variable> <cond-oper> <value>

[&& condition]
[|| condition]

cond-oper : == != > >= < <=

if (x == 7) ..
if (Carry == 1 && a1 < a2) ..
if (y > 44 || Carry || x != z) ..
if (--index > 0) ..
if (bx == 1 || ++i < max) ..
if (sub_1() != 0) ..

Bit variables
bit a, b, c, d;
char i, j, k;

bit bitfun(void) // bit return type (using Carry bit)
{

return 0; // Clear Carry, return
return 1; // Set Carry, return
nop();
return Carry; // return
return b; // Carry=b; return
return !i;
return b & PORTA.3;

}
..
b = bitfun2(bitfun(), 1);
if (bitfun()) ..
if (!bitfun()) ..
if (bitfun() == 0) ..

b = !charfun();
b = charfun() > 0;
b = !bitfun();
Carry = bitfun();
b &= bitfun();

CC5X C Compiler B Knudsen Data

35

if (bitfun() == b) ..
if (bitfun() == PORTA.1) ..
i += b; // conditional increment
i -= b; // conditional decrement
i = k+Carry;
i = k-Carry;
b = !b; // Toggle bit (or b=b==0;)
b = !c; // assign inverted bit
PORTA.0 = !Carry;
a &= PORTA.0;
PORTA.1 |= a;
PORTA.2 &= a;

// assign condition using 8 bit char variables
b = !i;
b = !W;
b = j == 0;
b = k != 0;
b = i > 0;

// assign bit conditions
b = c&d; //also &&, |, ||, +, ^ , ==, !=, <, >, >=, <=

// conditions using bit variables
if (b == c) .. // also !=, >, <, >=, <=

// initialized local bit variables
bit bx = cx == '+';
bit by = fx() != 0xFF;

Multiplication, division and modulo
multiplication : a16 = b16 * c16; // 16 * 16 bit

A general multiplication algorithm is implemented, allowing most combinations of variable sizes.
Including a math library allows library calls to be generated instead of inline code. The algorithm
makes shortcuts when possible, for instance when multiplying by 2. This is treated as a left shift.
division : a16 = b16 / c8; // 16 / 8 bit
modulo : a32 = b32 % c16; // 32 % 16 bit

The division algorithm also allows most combinations of variable sizes. Shortcuts are made when
dividing by 2 (or 2*2*..). These are treated as right shifts.

Precedence of C operators
Highest: ()

++ --
* / %
+ -
<< >>
< <= > >=
== !=
&
^
|
&&
||

Lowest: = += -= *= /= etc.

CC5X C Compiler B Knudsen Data

36

Mixed variable sizes are allowed
a32 = (uns32) b24 * c8; // 24 * 8 bit, result 32 bit
a16 = a16 + b8; // 16 + 8 bit, result 16 bit

Most combinations of variables are allowed, the compiler performs sign extension is required. Multiple
operations in the same expression are allowed when using 8 bit variables.
a8 = b8 + c8 + d8 + 10;

3.3 Constants
x = 34; /* decimal */
x = 0x22; /* hexadecimal */
x = 'A'; /* ASCII */
x = 0b010101; /* binary */

x = 0x1234 / 256; /* 0x12 : MSB */
x = 0x1234 % 256; /* 0x34 : LSB */
x = 33 % 4; /* 1 */
x = 0xF & 0xF3; /* 3 */
x = 0x2 | 0x8; /* 10 */
x = 0x2 ^ 0xF; /* 0b1101 */
x = 0b10 << 2; /* 8 */
x = r1 + (3 * 8 - 2); /* 22 */
x = r1 + (3 + 99 + 67 - 2); /* 167 */
x = ((0xF & 0xF3) + 1) * 4; /* 16 */

Please note that parentheses are required in some cases.

Constant expressions
The size of integers is by default 8 bits for this compiler (other C compilers use typically 16 or 32 bits
depending on the CPU capabilities). An error is printed if the constant expression loses significant bits
because of value range limitations.

char a;
a = (10 * 100) / 256; // an error is printed
a = (10L * 100) / 256; // no error
a = ((uns16) 10 * 100) / 256; // no error
a = (uns16) (10 * 100) / 256; // error again
a = (10 * 200) / 256; // no error, 200 is a long int

Adding a L means conversion to long (16 bit).

The command line option -cu force 32 bit evaluation of constants so that no significant bits are lost.

Some new built in types can also be used:

TYPE SIZE MIN MAX
---- ---- --- ---
int8 : 8 bit signed 1 -128 127
int16: 16 bit signed 2 -32768 32767
int24: 24 bit signed 3 -8388608 8388607
int32: 32 bit signed 4 -2147483648 2147483647
uns8 : 8 bit unsigned 1 0 255
uns16: 16 bit unsigned 2 0 65535
uns24: 24 bit unsigned 3 0 16777215
uns32: 32 bit unsigned 4 0 4294967295

CC5X C Compiler B Knudsen Data

37

The constant type is by default the shortest signed integer. Adding an U behind a constant means that it is
treated as unsigned. Note that constants above 0x7FFFFFFF are unsigned by default (with or without an
U behind).

Enumeration
An enumeration is a set of named integer constants. It can often replace a number of #define statements.
The numbering starts with 0, but this can be changed:
enum { A1, A2, A3, A4 };
typedef enum { alfa = 8, beta, zeta = -4, eps, } EN1;
EN1 nn;
enum con { Read_A, Read_B };
enum con mm;
mm = Read_A;
nn = eps;

3.4 Functions
Function definitions can look as follows:
void subroutine2(char p) { /* C statements */}
bit function1(void) { }
long function2(char W) { }
void main(void) { }

Function calls:
subroutine1();
subroutine2(24);
bitX = function1();
x = function2(W);
y = fx1(fx3(x));

The compiler need to know the definition of a function before it is called to enable type checking. A
prototype is a function definition without statements. Prototypes are useful when the function is called
before it is defined. The parameter name is optional in prototypes:
char function3(char);
void subroutine1(void);

Function return values
Functions can return values up to 4 bytes wide. Return values can be assigned to a variable or discarded.
Handling and using return values is automated by the compiler.

The least significant byte is always placed in W when using 14 bit core devices. Signed variables and
variables larger than 8 bits also use temporary variables on the computed stack. The 12 bit core use the W
register when returning 8 bit constants. All other return values are placed in return variables on the
computed stack.

A function can return any value type. The W register is used for 8 bit return value if possible. The Carry
flag is used for bit return values. The compiler will automatically allocate a temporary variable for other
return types. A function with no return value is of type void.

Parameters in function calls
There are no fixed limit on the number of parameters allowed in function calls. Space for parameters are
allocated in the same way as local variables which allows efficient reuse. The bit type is also allowed.
Note that if W is used, this has to be the LAST parameter.
char func(char a, uns16 b, bit ob, char W);

CC5X C Compiler B Knudsen Data

38

Internal functions
The internal functions provides direct access to certain inline code:
btsc(Carry); // void btsc(char); - BTFSC f,b
btss(bit2); // void btss(char); - BTFSS f,b
clrwdt(); // void clrwdt(void); - CLRWDT
clearRAM(); // void clearRAM(void); clears all RAM
i = decsz(i); // char decsz(char); - DECFSZ f,d
W = incsz(i); // char incsz(char); - INCFSZ f,d
nop(); // void nop(void); - NOP
nop2(); // void nop2(void); - GOTO next address
retint(); // void retint(void); - RETFIE
W = rl(i); // char rl(char); - RLF i,d
i = rr(i); // char rr(char); - RRF i,d
sleep(); // void sleep(void); - SLEEP
skip(i); // void skip(char); - computed goto
k = swap(k); // char swap(char); - SWAPF k,d

The internal rotate functions are also available for the larger variable sizes:

a16 = rl(a16); // 16 bit left rotation
a32 = rr(a32); // 32 bit right rotation

The inline function nop2() is implemented by a GOTO to the next address. Thus, nop2() can replace two
nop() to get more compact code. The main use of nop() and nop2() is to design exact delays in timing
critical parts of the application.

3.5 Type Cast
Constants and variables of different types can be mixed in expressions. The compiler converts them
automatically to the same type according to the stated rules. For example, the expression:

a = b + c;

consists of 2 separate operations. The first is the plus operation and the second is the assignment. The
type conversion rules are first applied to b+c. The result of the plus operation and a are treated last.

The CC5X compiler use 8 bit int size and contains significantly many data types (integers, fixed and
floating point). The type cast rules have been set up to provide best possible compatibility with standard
C compilers (which typically use 16 or 32 bit int size).

The type conversion rules implemented are:
1. if one operand is double -> the other is converted to double
2. if one operand is float -> the other is converted to float
3. if one operand is 32 bit -> the other is converted to 32 bit
4. if one operand is 24 bit -> the other is converted to 24 bit
5. if one operand is long -> the other is converted to long
6. if one operand is unsigned -> the other is converted to unsigned

NOTES:
• The sign is extended before the operand is converted to unsigned.
• Assignment is also an operation.
• Constants are SIGNED, except if U is added.
• The bit type is converted to unsigned char.
• The fixed point types are handled as subtypes of float.

CC5X C Compiler B Knudsen Data

39

Type conversion in C is difficult. The compiler may generate a warning if a type cast is required to make
the intention clear. Remember that assignment (=) is a separate operation. The separate operations are
marked (1:), (2:) and (3:) in the following examples.

uns16 a16;
uns8 b8, c8;
int8 i8, j8;

a16 = b8 * c8; /* (1:) In this case both b8 and c8 are 8 bit unsigned, so the type of the multiplication is 8
bit unsigned. (2:) The result is then assigned to a 16 bit unsigned variable a16. Converting the 8 bit
unsigned result to 16 bit unsigned means clearing the most significant bits of a16. The compiler generates
a warning because significant bits of the multiplication are lost due to the type conversion rules. */

a16 = (uns16) (b8 * c8); /* (1:) Adding parenthesis just isolate the multiplication and the multiplication
result is still 8 bit unsigned. (2:) The (uns16) type cast is not needed because this type cast is done
automatically before the assignment. The compiler generates a warning because significant bits of the
multiplication are lost due to the type conversion rules. */

a16 = (uns16) b8 * c8; /* (1:) Converting one of the arguments to 16 bit unsigned BEFORE the
multiplication is the right syntax to get a 16 bit result. (2:) The result and the destination a16 now have
the same type for the assignment and no type conversion is needed. */

a16 = (uns8) (b8 * c8); /* (1:) The multiplication result is 8 bit unsigned. (2:) The (uns8) type cast tells
the compiler that the result should be 8 bit unsigned, and no warning is generated even though it looks
like significant bits of the multiplication are lost. */

a16 = b8 * 200; /* (1:) Constant 200 is a 16 bit signed constant (note that 200U is an 8 bit unsigned
constant, and that 127 is the largest 8 bit signed constant). Argument b8 is therefore automatically
converted to 16 bit. The constant is then converted to unsigned and the result is 16 bit unsigned. (2:) The
result and the destination a16 now have the same type for the assignment and no type conversion is
needed. */

a16 = (int16) i8 * j8; /* (1:) Both arguments are converted to 16 bit signed and the result is 16 bit signed.
(2:) The result is converted to unsigned before the assignment, but this does not mean any real change
when the size is the same (example: -1 and 0xFFFF have the same 16 bit representation). */

a16 = (uns16) (uns8)i8 * (uns8)j8; /* (1:) To get an 8*8 bit unsigned multiplication it is required to cast
both arguments to unsigned before extending the size to 16 bit unsigned. Otherwise the sign bit will be
extended and the multiplication will need more code and cycles to execute. (2:) The result and the
destination a16 now have the same type for the assignment and no type conversion is needed. */

a16 = ((uns16) b8 * c8) / 3; /* (1:) Converting one of the arguments to 16 bit unsigned before the
multiplication gives a 16 bit result. (2:) Division is the next operation and is using the 16 bit unsigned
multiplication result. Constant 3 is 8 bit signed, and is then automatically converted to 16 bit signed and
further to 16 bit unsigned. The result of the division is 16 bit unsigned. (3:) The division result and the
destination a16 now have the same type for the assignment and no type conversion is needed. */

3.6 Accessing Parts of a Variable
Each bit in a variable can be accessed directly:

uns32 a;
a.7 = 1; // set bit 7 of variable a to 1
if (a.31 == 0) // test bit 31 of variable a

t[i].4 = 0; // bit 4 of the i'th element

CC5X C Compiler B Knudsen Data

40

Bit 0: least significant bit
Bit 7: most significant bit of a 8 bit variable
Bit 15: most significant bit of a 16 bit variable
Bit 23: most significant bit of a 24 bit variable
Bit 31: most significant bit of a 32 bit variable

Also, parts of a variable can be accessed directly:

uns16 a;
uns32 b;
a.low8 = 100; // set the least significant 8 bits
a = b.high16; // load the most significant 16 bits

low8 : least significant byte
high8 : most significant byte
mid8 : second byte
midL8 : second byte
midH8 : third byte
low16 : least significant 16 bit
mid16 : middle 16 bit
high16: most significant 16 bit
low24 : least significant 24 bit
high24: most significant 24 bit

The table shows which bits are accessed depending on the variable size in bytes (1,2,3,4) and the sub-
index used. The * indicates normal use of the sub-index:

1 2 3 4
------ ------ ------- -------

low8 0-7 * 0-7 * 0-7 * 0-7
high8 0-7 * 8-15 * 16-23 * 24-31
mid8 0-7 8-15 * 8-15 8-15
midL8 0-7 8-15 8-15 * 8-15
midH8 0-7 8-15 16-23 * 16-23
low16 0-7 0-15 * 0-15 * 0-15
mid16 0-7 0-15 8-23 * 8-23
high16 0-7 0-15 * 8-23 * 16-31
low24 0-7 0-15 0-23 * 0-23
high24 0-7 0-15 0-23 * 8-31

3.7 C Extensions
CC5X adds some extensions to the standard C syntax:

1. The bit variable type

2. The interrupt function type

3. C++ style comments are allowed :
 // a comment, valid to the end of the line

4. Local variables can be declared between statements as in C++. Standard C requires local variables to
be defined in the beginning of a block.

5. Binary constants : 0bxxxxxx or bin(xxxxxx)
The individual bits can be separated by the '.':
0b0100

CC5X C Compiler B Knudsen Data

41

0b.0.000.1.01.00000
bin(0100)
bin(0001.0100)

6. Preprocessor statements can be put into macros. Such preprocessor statements are not extended to
multiple lines. The inserted preprocessor statements are evaluated when the macro is expanded, and not
when it is defined.

#define MAX \
{ \

a = 0; \
#if AAA == 0 && BBB == 0 \
b = 0; \

#endif \
}

7. Several of the type modifiers are not standard in C (page0..page3, bank0..bank3, shrBank, size1,size2)

More C extensions are allowed by the #pragma statement.

3.8 Predefined Symbols
The basic PICmicro registers are predefined (header files defines the rest):

W, INDF, PCL, STATUS, FSR, PORTA, Carry, etc.

The following names are defined as internal functions, and are translated into special instructions or
instruction sequences.

btsc, btss, clearRAM, clrwdt, decsz, incsz, nop, nop2, retint, rl,
rr, sleep, skip, swap

Extensions to the standard C keywords:

bank0, bank1, bank2, bank3, bit, fixed8_8, .. fixed24_8, float16,
float24, float32, int8, int16, int24, int32, interrupt, page0, page1,
page2, page3, shrBank, size1, size2, uns8, uns16, uns24, uns32

Standard C keywords used:

auto, break, case, char, const, continue, default, double, enum,
extern, do, else, float, for, goto, if, inline, int, long, return,
short, signed, sizeof, static, struct, switch, typedef, union,
unsigned, void, while,
define, elif, ifdef, ifndef, include, endif, error, pragma, undef

The remaining standard C keywords are detected and compiled. One is ignored (register), and the rest
cause a warning to be printed (volatile, line).

Automatically defined macros and symbols
The following symbols are automatically defined when using the CC5X compiler, and can be used in
preprocessor macros:

__CodePages__ := equal to 1..4, depending on the
number of code pages on the actual chip

CC5X C Compiler B Knudsen Data

42

__CC5X__ := Integer version number: 3200 means version 3.2
3202 means version 3.2B
* first 2 digits : main version
* last 2 digits : minor release (01=‘A’, 02=‘B’, etc.)

__CoreSet__ := 1200: 12 bit core, 1400: 14 bit core

__IRP_SFR__ := 1 if IRP is active when accessing
special function registers using INDF, 0
otherwise. Note that '#pragma update_IRP 0'
will set this macro to 0 until
'#pragma update_IRP 1' is processed.

__IRP_RAM__ := 1 if IRP is active when accessing RAM
registers using INDF, 0 otherwise. Using
'#pragma update_IRP 0' will set this macro
to 0 until '#pragma update_IRP 1'.

_16CXX := always defined (12 and 14 bit cores)

_16C5X := when the 12 bit core is selected

_16C54 := when the 16C54 is selected, similar for
the other devices

Macro's __DATE__ and __TIME__
Macro's for date and time are defined when compilation starts.

Macro Format Example
__TIME__ HOUR:MIN:SEC "23:59:59"
__DATE__ MONTH DAY YEAR "Jan 1 2005"
__DATE2__ DAY MONTH YEAR " 1 Jan 2005"

3.9 Upward Compatibility
The aim is to provide best possible upward compatibility from version to version. Sometimes the
generated code is improved. If the application programs contain timing critical parts (depends on an exact
instruction count), then these parts should be verified again, for example by using the MSDOS program fc
(file compare) on the generated assembly files.

Evaluation of constant expression is slightly changed from version 2.x in order to adapt to standard C. An
error message is printed if significant bits are lost. The cure is to use type conversion.

a = (uns16) 10 * 100;

Alternatively will the command line option -cu force 32 bit evaluation of constant expressions. The
option -wS changes the error message to a warning.

CC5X C Compiler B Knudsen Data

43

4 PREPROCESSOR DIRECTIVES
The preprocessor recognizes the following keywords:

#define, #undef, #include
#if, #ifdef, #ifndef, #elif, #else, #endif
#error, #pragma

A preprocessor line can be extended by putting a '\' at the end of the line. This requires that there are no
space characters behind the '\'.

#define
#define counter v1
#define MAX 145
#define echo(x) v2 = x
#define mix() echo(1) /* nested macro */

Note that all #define's are global, even if they are put inside a function.

Preprocessor directives can be put into the #define statement.

Macro concatenation
The concatenation operator ## allows tokens to be merged while expanding macros. Examples:

#define CONCAT(NAME) NAME ## _command()
CONCAT(quit) => quit_command()
CONCAT() => _command()
CONCAT(dummy(); help); => dummy(); help_command()

#define CONCAT2(N1,N2) N1 ## _comm ## N2()
CONCAT2(help, and) => help_command()

#define CONCAT3(NBR) 0x ## NBR
CONCAT3(0f); => 0x0f

#define CONCAT4(TKN) TKN ## =
CONCAT4(+) => +=

#define mrg(s) s ## _msg(s)
#define xmrg(s) mrg(s)
#define foo alt

mrg(foo) => foo_msg(alt)
xmrg(foo) => alt_msg(alt)

#define ILLEGAL1() ## _command
#define ILLEGAL2() _command ##

Macro stringification
The stringification operator # allows a macro argument to be converted into a string constant. Examples:

#define STRINGI1(ARG) #ARG
STRINGI1(help) => "help"
STRINGI1(p="foo\n";) => "p=\"foo\\n\";"

CC5X C Compiler B Knudsen Data

44

#define STRINGI2(A1,A2) #A1 " " #A2
STRINGI2(x,y) => "x" " " "y" (equivalent to "x y")

#define str(s) #s
#define xstr(s) str(s)
#define foo 4

str(foo) => "foo"
xstr(foo) => "4"

#define WARN_IF(EXP) \
do { if (EXP) \

warn("Warning: " #EXP "\n"); } \
while (0)

WARN_IF (x==0); => do { if (x==0)
warn("Warning: " "x==0" "\n"); } while (0);

#include
#include "test.h"
#include <test.h>

#include's can be nested. When using #include "test.h" the current directory is first searched. If the file is
not found there, then the library directories are searched, in the same order as supplied in the command
line option list (-I<dir>). The current directory is skipped when using #include <test.h>.

Macro's can be used in #include files. The following examples show the possibilities. Note that this is not
standard C.

#include "file1" ".h"
#define MAC1 "c:\project\"
#include MAC1 "file2.h"
#define MAC2 MAC1 ".h"
#include MAC2
#define MAC3 <file3.h>
#include MAC3

Rules for macro’s in #include:
1. Strings using "" can be splitted, but not strings using <>
2. Only the first partial string can be a macro
3. Nested macro's is possible
4. Only one makro at each level is possible

#undef
#define MAX 145
..
#undef MAX /* removes definition of MAX */

#undef does the opposite of #define. The #undef statement will not produce any error message if the
symbol is not defined.

#if
#if defined ALFA && ALFA == 1

..

CC5X C Compiler B Knudsen Data

45

/* statements compiled if ALFA is equal to 1 */
/* conditional compilation may be nested */

#endif

An arbitrary complex constant expression can be supplied. The expression is evaluated the same way as a
normal C conditional statement is processed. However, every constant is converted to a 32 bit signed
constant first.

1) macro's are automatically expanded
2) defined(SYMBOL)and defined SYMBOL are replaced by 1 if the symbol

is defined, otherwise 0.
3) legal constants : 1234 -1 'a' '\\'
4) legal operations : + - * / % >> <<

== != < <= > >= || &&
! ~ ()

#ifdef
#ifdef SYMBOL

..
/* Statements compiled if SYMBOL is defined.

Conditional compilation can be nested. SYMBOL
should not be a variable or a function name. */

#endif

#ifndef
#ifndef SYMBOL

/* statements compiled if SYMBOL is not defined */
#endif

#elif
#ifdef AX

..
#elif defined BX || defined CX

/* statements compiled if AX is not
defined, and BX or CX is defined */

#endif

#else
#ifdef SYMBOL

..
#else

/* statements compiled if SYMBOL is not defined */
#endif

#endif
#ifdef SYMBOL

..
#endif /* end of conditional statements */

#error
#error This is a custom defined error message

The compiler generates an error message using the text found behind #error.

CC5X C Compiler B Knudsen Data

46

#warning
#warning This is a warning

The following output is produced. Note that this directive is not standard C.
Warning test.c 7: This is a warning

#message
#message This is message 1

The following output is produced. Note that this directive is not standard C.
Message: This is message 1

4.1 The pragma Statement
The pragma statement is used for processor specific implementations.

#pragma alignLsbOrigin <a> [to]
This pragma statement allows the origin to be aligned. The compiler will check if the least significant
byte of the origin address is equal to <a>, or alternatively within the range <a> to . If this is not true,
the origin is incremented until the condition becomes true. Both <a> and may range from -255 to
255.

#pragma alignLsbOrigin 0
#pragma alignLsbOrigin 2 to 100
#pragma alignLsbOrigin 0 to 190 // [-255 .. 255]
#pragma alignLsbOrigin -100 to 10

Such alignment is useful to make sure that a computed goto does not cross a 256 word address boundary.
More details are found in Section Origin alignment on page 108 in Chapter 9.2 Computed Goto. This type
of alignment does not apply to the 12 bit core.

#pragma asm2var 1
Enable equ to variable transformation. Defined in Chapter 6.6 Inline Assembly on page 75.

#pragma assert [/] <type> <text field>
Assert statements allows messages to be passed to the simulator, emulator, etc. Refer to Chapter 7.3
Assert Statements on page 99 for details.

#pragma assume *<pointer> in rambank <n>
The #pragma assume statement tells the compiler that a pointer operates in a limited address range. Refer
to Chapter 2.4 Pointers on page 24 for details.

#pragma bit <name> @ <N.B or variable[.B]>
Defines the global bit variable <name>. Useful for assigning a bit variable to a certain address. Only valid
addresses are allowed:
#pragma bit bitxx @ 0x20.7
#pragma bit ready @ STATUS.7
#pragma bit ready @ PA2

NOTE: If the compiler detects double assignments to the same RAM location, this will cause a warning
to be printed. The warning can be avoided if the second assignment use the variable name from the first
assignment instead of the address (#pragma bit var2 @ var1).

CC5X C Compiler B Knudsen Data

47

#pragma cdata[ADDRESS] = <VXS>, .., <VXS>
The cdata statement can store 14 bit data in program memory at fixed addresses. It can also be used to
store data in EEPROM memory. Refer to Chapter 6.9 The cdata Statement on page 94 for details.

#pragma cdata[ADDRESS] = <VXS>, .., <VXS>
#pragma cdata[] = <VXS>, .., <VXS>
#pragma cdata.IDENTIFIER = <VXS>, .., <VXS>

ADDRESS: 0 .. 0x7FFE
VXS : < VALUE | EXPRESSION | STRING>
VALUE: 0 .. 0x3FFF
EXPRESSION: any valid C constant expression,

i.e. 0x1000 | (3*1234)
STRING: "Valid C String\r\n\0\x24\x8\xe\xFF\xff\\\""

#pragma char <name> @ <constant or variable>
Defines the global variable <name>. Useful for assigning a variable to a certain address. Only valid
addresses are allowed:

#pragma char i @ 0x20
#pragma char PORTX @ PORTC

NOTE: If the compiler detects double assignments to the same RAM location, this will cause a warning
to be printed. The warning can be avoided if the second assignment use the variable name from the first
assignment instead of the address (#pragma char var2 @ var1).

#pragma chip [=] <device>
Defines the chip type. This allows the compiler to select the right boundaries for code and memory size,
variable names, etc. Note that the chip type can also be defined as a command line option.

#pragma chip PIC16C55

This statement have to proceed any normal C statements, but some preprocessor statements, like #if and
#define, can be compiled first.

The supported devices are either known internally (16C54,55,56,57,58, 61,64,65, 71,73,74, 84,
620,621,622) or defined in a PICmicro header file (i.e.16F877.h). It is also possible to make new header
files. Refer to file ‘chip.txt’ for details.

#pragma codepage [=] <0,1,2,3>
// 12 bit core 14 bit core

0 // 0x000 - 0x1FF 0x0000 - 0x07FF
1 // 0x200 - 0x3FF 0x0800 - 0x0FFF
2 // 0x400 - 0x5FF 0x1000 - 0x17FF
3 // 0x600 - 0x7FF 0x1800 - 0x1FFF

Defines the codepage to be used. Code is located at the start of the active codepage, or from the current
active location on that page. The codepage can not be changed inside a function. Non-existing pages for a
specific controller are mapped into existing ones.

#pragma codepage 3
/* following functions are located on codepage 3 */

CC5X C Compiler B Knudsen Data

48

#pragma computedGoto [=] <0,1,2>
This statement can be used when constructing complicated computed goto's. Refer to Chapter 9.2
Computed Goto on page 107 for details.

#pragma computedGoto 1 // start region
#pragma computedGoto 0 // end of region
#pragma computedGoto 2 // start large region

#pragma config [<id>] = <state> [, <id> = <state>]
<id> : PWRTE, WDTE, FOSC, BODEN, ID, reg2
<state> : on, off, LP,HS,XT,RC, <expression>

#pragma config WDTE=off, FOSC=HS
#pragma config WDTE=0, FOSC=2, PWRTE=1

#pragma config |= 0x100 // set bit 8
#pragma config &= 0xFFFC // clear bit 0 and 1
#pragma config &= ~3 // clear bit 0 and 1
#pragma config = (0x3 | 0x10) & 0x1FF

The second config register (0x2008) is accessed using:

#pragma config reg2 = 0x3 | 0x4

Refer to Chapter 4.2 PICmicro Configuration on page 53 for more details.

#pragma config_def [=] <value>
Defines the position and size of the supported config identifiers, and is normally found in PICmicro
header files. Refer to file ‘chip.txt’ for details.

#pragma config_reg2 [=] <address>
The address of the second config register is normally defined in the header file using:

#pragma config_reg2 0x2008

#pragma inlineMath <0,1>
The compiler can be instructed to generate inline integer math code after a math library is included.

#pragma inlineMath 1
a = b * c; // inline integer code is always generated

#pragma inlineMath 0

#pragma interruptSaveCheck <n,w,e>
The compiler will automatically check that vital registers are saved and restored during interrupt. Please
refer to Chapter 6.3 Interrupts on page 62 for details (or file ‘int16cxx.h’). The error and warning
messages can be removed:

#pragma interruptSaveCheck n // no warning or error
#pragma interruptSaveCheck w // warning only
#pragma interruptSaveCheck e // error and warning (default)

#pragma library <0/1>
CC5X will automatically delete unused (library) functions.

CC5X C Compiler B Knudsen Data

49

#pragma library 1
// functions that are deleted if unused
// applies to prototypes and function definitions

#pragma library 0

#pragma location [=] <0,1,2,3,->
This statement can be used to locate the functions on different codepages. Refer to Chapter 6.1 Program
Code Pages on page 60 for more details.

#pragma mainStack <minVarSize> @ <lowestStartAddr>
This statement defines a main stack for local variables, parameters and temporary variables. The main
stack is not an additional stack, but tells the compiler where the main stack is located (which bank). Only
variables above or equal to <minVarSize> will automatically be put in the main stack. The
<lowestStartAddr> is the lowest possible start address for the main stack (the stack grows upwards).

#pragma mainStack 3 @ 0x20

Using this pragma means that local variables, parameters and temporary variables of size 3 bytes and
larger (including tables and structures) will be stored in a single stack allocated no lower than address
0x20. Smaller variables and variables with a bank modifier will be stored according to the default/other
rules. Using size 0 means all variables including bit variables.

Note that #pragma rambank is ignored for variables stored in the main stack. Address ranging from 0x20
to 0x6F/0x7F are equivalent to the bank0 type modifier.

#pragma minorStack <maxVarSize> @ <lowestStartAddr>
This statement defines a minor stack for local variables, parameters and temporary variables. One reason
for defining a minor stack is that it may be efficient to use shared RAM or a specific bank for local
variables up to a certain size. Only variables below or equal to <maxVarSize> will automatically be put
in the minor stack. The <lowestStartAddr> is the lowest possible start address for the minor stack (the
stack grows upwards).

#pragma minorStack 2 @ 0x70

In this case, local variables, parameters and temporary variables up to 2 bytes will be put in shared RAM
from address 0x70 and upward. Larger variables and variables with a bank modifier will be stored
according to the default/other rules. Using size 0 means bit variables only. This pragma can be used in
combination with the main stack. The variable size defined by the minor stack have priority over the main
stack.

#pragma optimize [=] [N:] <0,1>
This statement enables optimization to be switched ON or OFF in a local region. A specific type of
optimization can also be switched on or off. The default setting is on.

1. redirect goto to goto
2. remove superfluous gotos
3. replace goto by skip instructions
4. remove instructions that affects the zero-flag only.
5. replace INCF and DECF by INCFSZ and DECFSZ
6. remove superfluous updating of PA0 and PA1
7. remove other superfluous instructions
8. remove superfluous loading of W

CC5X C Compiler B Knudsen Data

50

Examples:
#pragma optimize 0 /* ALL off */
#pragma optimize 1 /* ALL on */
#pragma optimize 2:1 /* type 2 on */
#pragma optimize 1:0 /* type 1 off */

/* combinations are also possible */
#pragma optimize 3:0, 4:0, 5:1
#pragma optimize 1, 1:0, 2:0, 3:0

NOTE: The command line option -u will switch optimization off globally, which means that all settings
in the source code are ignored.

#pragma origin [=] <expression>
Valid address region is 0x0000 - 0x1FFF. Defines the address (and codepage) of the following code. The
current active location on a codepage can not be moved backwards, even if there is no code in that area.
Origin can not be changed inside a function.

Examples:
#pragma origin 4 // interrupt start address
#pragma origin 0x700 + 2

#pragma packedCdataStrings <0,1>
Strings will normally be packed into 2*7 bits when using cdata. This statement allows the packing of
strings to be enabled and disabled for different parts of the source code. See Section Storing EEPROM
Data on page 96 in Chapter 6.9 The cdata Statement for more details.

#pragma rambank [=] <0,1,2,3,->
14 bit core:
- => mapped space: (chip specific)
0 => bank 0: 0 (0x000) - 127 (0x07F)
1 => bank 1: 128 (0x080) - 255 (0x0FF)
2 => bank 2: 256 (0x100) - 383 (0x17F)
3 => bank 3: 384 (0x180) - 511 (0x1FF)

12 bit core:
- => mapped space: 8 - 15 (0x0F)
0 => bank 0: 16 (0x10) - 31 (0x1F)
1 => bank 1: 48 (0x30) - 63 (0x3F)
2 => bank 2: 80 (0x50) - 95 (0x5F)
3 => bank 3: 112 (0x70) - 127 (0x7F)

#pragma rambank defines the region(s) where the compiler will allocate variable space. The compiler
gives an error message when all locations in the current bank are allocated.

RAM banks are only valid for some of the controllers. Non-existing banks for the other controllers are
mapped into defined RAM space.

#pragma rambase [=] <n>
Defines the start address when declaring global variables. This statement is included for backward
compatibility reasons only. The use of rambank and rambase are very similar. The address have to be
within the RAM space of the chip used.
12 bit core note: The locations from address 0 to 31 are treated as a unit. Using start address 7 means that
locations in the mapped register space and bank 0 are allocated. Using start address 32 implies that
locations in the mapped register space are allocated.

CC5X C Compiler B Knudsen Data

51

NOTE: The start address is not valid for local variables, but rambase can be used to select a specific
RAM-bank.

#pragma ramdef <ra> : <rb> [MAPPING]
This statement is normally used in PICmicro header files. Refer to file ‘chip.txt’ for details.

#pragma resetVector <n>
Some chips have an unusual startup vector location (like the PIC16C508/9). The reset-vector then have to
be specified. This statement is normally NOT required, because the compiler normally use the default
location, which is the first (14 bit core) or the last location (12 bit core).

#pragma resetVector 0x1FF // at last code location
#pragma resetVector 0 // at location 0
#pragma resetVector 10 // at location 10
#pragma resetVector - // NO reset-vector at all

#pragma return[<n>] = <strings or constants>
Allows multiple return statements to be inserted. This statement should be proceeded by the skip()
statement. The compiler may otherwise remove most returns. The constant <n> is optional, but it allows
the compiler to print a warning when the number of constants is not equal to <n>. Refer to Chapter 9.2
Computed Goto on page 107 for more details. Note that ‘const’ data types should normally be used for
constant data.

skip(W);
#define NoH 11
#pragma return[NoH] = "Hello world"
#pragma return[5] = 1, 4, 5, 6, 7
#pragma return[] = 0 1 2 3 44 'H' \

"Hello" 2 3 4 0x44
#pragma return[]= 'H' 'e' 'l' 'l' 'o'
#pragma return[3] = 0b010110 \

0b111 0x10
#pragma return[9] = "a \" \r\n\0"
#pragma return[] = (10+10*2), (0x80+'E') "nd"
#pragma return[] = 10000 : 16 /* 16 bit constant */ \

0x123456 : 24 /* 24 bit constant */ \
(10000 * 10000) : 32 /* 32 bit constant */

#pragma sharedAllocation
This pragma allow functions containing local variables and parameters to be shared between independent
call trees (interrupt and the main program). However, when doing this there will be a risk of overwriting
these shared variables unless special care is taken. Further description in Chapter 6.2.

#pragma stackLevels <n>
The number of call levels can be defined (normally not required). The 12 bit core use by default 2 levels.
The 14 bit core use by default 8 levels.

#pragma stackLevels 4 // max 64

CC5X C Compiler B Knudsen Data

52

#pragma unlockISR
The interrupt routine normally have to reside on address 4. The following pragma statement will allow
the interrupt routine to be placed anywhere. Note that the compiler will NOT generate the link from
address 4 to the interrupt routine.

#pragma unlockISR

#pragma updateBank [entry | exit | default] [=] <0,1>
The main usage of #pragma updateBank is to allow the automatic updating of the bank selection register
to be switched on and off locally. These statements can also be inserted outside the functions, but they
should surround a region as small as possible

#pragma updateBank 0 /* OFF */
#pragma updateBank 1 /* ON */

Another use of #pragma updateBank is to instruct the bank update algorithm to do certain selections.
These statements can only be used inside the functions:

#pragma updateBank entry = 0
/* The 'entry' bank force the bank bits to be set

to a certain value when calling this function */

#pragma updateBank exit = 1
/* The 'exit' bank force the bank bits to be set

to a certain value at return from this function */

#pragma updateBank default = 0
/* The 'default' bank is used by the compiler at

loops and labels when the algorithm give up
finding the optimal choice */

#pragma update_FSR [=] <0,1>
Allows the automatic updating of the bank selection bits FSR.5 and FSR.6 to be switched on and off
locally. This can be useful in some cases when INDF is used directly in the user code. The statement
works for core 12 devices with more than one RAM bank. It is ignored for the other devices.

#pragma update_FSR 0 /* OFF */
#pragma update_FSR 1 /* ON */

These statements can be inserted anywhere, but they should surround a region as small as possible.

#pragma update_IRP [=] <0,1>
Allows the automatic updating of the indirect bank selection bit IRP to be switched on and off locally.
The statement is ignored when using the 12 bit core.

#pragma update_IRP 0 /* OFF */
#pragma update_IRP 1 /* ON */

These statements can be inserted anywhere.

#pragma update_PAGE [=] <0,1>
Allows the automatic updating of the page selection bits to be swiched on and off locally. This is not
recommended except in special cases. The page bits resides in the STATUS register for core 12 devices,
and in PCLATH for core 14.

CC5X C Compiler B Knudsen Data

53

#pragma update_PAGE 0 /* OFF */
#pragma update_PAGE 1 /* ON */

#pragma update_RP [=] <0,1>
Allows the automatic updating of the bank selection bits RP0 and RP1 to be switched on and off locally.
The statement is ignored when using the 12 bit core.

#pragma update_RP 0 /* OFF */
#pragma update_RP 1 /* ON */

These statements can be inserted anywhere, but they should surround a region as small as possible.

#pragma versionFile [<file>]
Allows a version number at the and of the include file to be incremented for each compilation. The use of
this statement is defined in Chapter 5.2 Automatic incrementing version number in a file on page 58.

#pragma wideConstData [<N> | p | r]
Enable storing of 14 bit data for 14 bit core devices. Details is found in Chapter 2.5 Const Data Support
on page 28.

4.2 PICmicro Configuration
PICmicro configuration information can be put in the generated hex and assembly file. ID locations can
also be programmed. The configuration information is generated IF AND ONLY IF the #pragma config
statement is included. Note that some PICmicro programming devices may reject this information,
especially setting of the ID locations.

Syntax:
#pragma config <id> = <state> [, <id> = <state>]

<id> : PWRTE, WDTE, FOSC, BODEN, ID
<state> : on, off, LP,HS,XT,RC, <number>, ~<number>

#pragma config WDTE=off, FOSC=HS
#pragma config WDTE=0, FOSC=2, PWRTE=1
#pragma config |= 0x100 // set bit 8
#pragma config &= 0xFFFC // clear bit 0 and 1
#pragma config &= ~3 // clear bit 0 and 1
#pragma config |= 3 // set bit 0 and 1

More than one #pragma config statement is possible. The default setting of the attributes is 0.

The operators '|' and '&' can be used to achieve high-level readability:
#define CP_off |= 0x3F30 // 16C62X and similar
#pragma config CP_off, FOSC = LP

Programming of ID-locations:
#pragma config ID=0x1234 // all 4 locations, 4*4 bit
#pragma config ID[0] = 0xF // location 0
#pragma config ID[1] = 0x1 // location 1
#pragma config ID[2]=1, ID[3]=0x2

The config and ID information is added at the end of the generated assembly and hex file.

CC5X C Compiler B Knudsen Data

54

Configuration word address:
• 12 bit core: 0xFFF
• 14 bit core: 0x2007

ID words:
PICmicro ADDRESS
16C54/55 0x200-0x203 4 locations
16C56 0x400-0x403 4 locations
16C57/58 0x800-0x803 4 locations
14 bit core 0x2000-0x2003 4 locations

CC5X C Compiler B Knudsen Data

55

5 COMMAND LINE OPTIONS
The compiler needs a C source file name to start compiling. Other arguments can be added if required.
The syntax is:

CC5X [options] <src>.c [options]

-a[<asmfile>] : produce assembly file.
The default file name is <src>.asm

-A[scHDpftumiJRbeokgN+N+N] : assembly file options
s: symbolic arguments are replaced by numbers
c: no C source code is printed
H: hexadecimal numbers only
D: decimal numbers only
p: no '.' in front of decimal constants
f: no object format directive is printed
t: no tabulators, normal spaces only
u: no extra info at the end of the assembly file
m: single source line only
i: no source indentation, straight left margin
J: put source after instructions to achieve a compact assembly file.
R: detailed macro expansion
b: do not add rambank info to variables in the assembly file
e: do not add ',1' to instructions when result is written back to the register
o: do not replace OPTION with OPTION_REG
k: do not convert all hexadecimal numbers (11h -> 0x11)
g: do not use PROCESSOR instead of the list directive
N+N+N: label, mnemonic and argument spacing. Default is 8+6+10.

-b : do not update bank selection bits
12 bit core: FSR.5 and 6
14 bit core: STATUS.RP0 and RP1

-bu : non-optimized updating of the bank selection bits

-B[pims] : write output from preprocessor to <src>.cpr
p : partial preprocessing
i : no include files
m: modify symbols
s : modify strings

-CC[<file>] : produce COD file, C mode
-CA[<file>] : produce COD file, ASM mode

-cd : allow cdata outside program space (warning only)
-cfc : use old format on config and idlocs in generated assembly file
-chu : disable sorting of addresses in generated HEX file
-cu : use 32 bit evaluation of constant expressions
-cxc : do not search current directory for include files

-dc : do not write compiler output file <src>.occ

-D<name>[=xxx] : define macro. Equivalent to #define name xxx

CC5X C Compiler B Knudsen Data

56

-e : single line error messages (no source lines are printed).
-ed : do not print error details
-ew : do not print warning details
-eL : list error and warning details at the end
-E<N> : stop after <N> errors (default is 4).

-f<hex-file-format> : i.e. INHX8M, INHX8S, INHX16, INHX32. Default is INHX8M. Note that
INHX8S use output files: <file>.HXH and <file>.HXL

-F : produce error file <src>.err
-FM : MPLAB compatible error format

-g : do not replace call by goto

-GW : dynamic selected skip() format, warning on long format (default)
-GD : dynamic selected skip() format
-GS : always short skip() format (error if boundary is crossed)
-GL : always long skip() format

-I<directory> : include files directory/folder. Up to 5 library directories can be supplied by using
separate -I<dir> options. When using #include "test.h" the current directory is first searched. If the file is
not found there, then the library directories are searched, in the same order as supplied in the command
line option list (-I<dir>). The current directory is skipped when using #include <test.h>.

-j : do not update page selection bits
12 bit core: STATUS.PA0 and PA1
14 bit core: PCLATH.3 and 4

-li<ENVI> : include directory from environment variable (default CCINC)
-lh<ENVD> : load default directory from environment variable (default CCHOME)

-L[<col>,<lin>] : produce list file <src>.lst
The maximun number of columns per line <col> and lines per page <lin> can be changed. The default
setting is -L80,60

-mc1 : default 'const' pointer size is 1 byte (8 bits)
-mc2 : default 'const' pointer size is 2 bytes (16 bits)
-mr1 : default RAM pointer size is 1 byte
-mr2 : default RAM pointer size is 2 bytes
-mm1 : default pointer size is 1 byte (all pointer types)
-mm2 : default pointer size is 2 bytes (all pointer types)

-Ma : truncate all automatic generated labels in the assembly/list files

-o<name> : write hex file to name

-O<directory> : output files directory. Files generated by the compiler are put on this directory, except
when a full path name is supplied.

-p<device> : defines the chip type. The device have to be known internally: 16C54,55,56,57,58,
61,64,65, 71,73,74, 84 or supported by a header file (i.e. 16F877.H). Default device is 16C54.

-p- : clear any preceding option -p<chip> to allow chip redefinition

CC5X C Compiler B Knudsen Data

57

-q<N> : assume disabled interrupt at the <N> deepest call levels. For example, –q1 allows the main
program to use all stack levels for function calls. Disabling interrupt at the deepest call level MUST then
be properly ensured in the user application program.

-Q : write the call tree to <src>.fcs.

-r : generate relocatable assembly (no hex file)
-r2[=][<filename.lkr>] : generate relocatable asm, use separate logical section for interrupt routine
-rb<N> : name on RAM bank 0 is BANK<N>, default BANK0
-ro<N> : add offset <N> when generating local variable block name
-rp<N> : name on codepage 0 is PROG<N>, default PROG1
-rx : make variables static by default

-S : silent operation of the compiler

-u : no optimizing

-V[rnuD] : generate variable file, <src>.var, sorted by address as default.
r: only variables which are referenced in the code
n: sort by name
u: unsorted
D: decimal numbers

-wB : warning when function is called from another code page
-wC : warning on upward compatibility issues
-we : no warning when fixed point constants are rounded
-wi : no warning on multiple inline math integer operations
-wL : (12 bit core only) print warning on all GOTO links to functions residing on hidden half of a
codepage.
-wm : no warning on single call to math integer function
-wO : warning on operator library calls
-wP : warning when code page bits are not correct
-wr : no warning on recursive calls
-wS : warning (no error) when constant expression loses significant bits
-wU : warning on uncalled functions

-W : wait until key pressed after compilation

-x<file> : assembler executable: -x"C:\Program Files\Microchip\MPASM Suite\mpasmwin.exe"
-X<option> : assembler option: -X/q (all options must be separate)

Doublequotes " " allows spaces in the option (not available on the MSDOS editions) :
-I"C:\Program Files\cc5x"

A path name can be written using '/' if this is supported by the file system, example:
c:/compiler/lib/file.h

Default compiler settings:
• hex file output to file <name>.hex
• processor = 16C54
• optimizing on
• extended call level is allowed
• update bank and page selection bits

CC5X C Compiler B Knudsen Data

58

Permanent assigned settings:
• nested comments is allowed
• char is unsigned

5.1 Options in a file
Options can be put in a file. The syntax is:

cc5x [..] +<filename> [..]

Many option files can be included, and up to 5 levels of nested include files are allowed. Options in a file
allows an unlimited number of options to be stated. Linefeed, space and TAB separates each option.
Comments can be added in the option file using the syntax:

// the rest of the line is a comment

Spaces can be added to each option if a space is added behind the '-' starting the option. This syntax
disables using more than one option on each line. Examples:

- D MAC = 1 + OP
- p 16C54 // comment
-p 16C54 // this will not work
- p 15C64 -a // not this either

Note that the file path is required if the file does not reside on the current directory.

String translation rules for options in a file:
1. Doublequotes " " allows spaces in the option, quotes are removed
2. Using \" means a single quote " in an option

-I"C:\Program Files\cc5x" ==> -IC:\Program Files\cc5x
-IC:"\Program Files"\cc5x ==> -IC:\Program Files\cc5x

-DMyString="\"Hello\n\"" ==> -DMyString="Hello\n"
-DQuote='\\"' ==> -DQuote='\"'

5.2 Automatic incrementing version number in a file
The compiler is able to automatically increment one or more version numbers for each compilation.
Three different syntax alternatives are available.

1. Option : -ver#verfile.c
#include "verfile.c" // or <verfile.c>

2. Option : -ver
#pragma versionFile // next include is version file
#include "verfile.c" // or <verfile.c>

3. Option : -ver
#pragma versionFile "verfile.c" // or <verfile.c>

Note that the command line option is required to make this increment happen. It is the decimal number
found at end of the included file that is incremented. The updated file is written back before the file is
compiled. No special syntax is assumed in the version file. Suggestions:

CC5X C Compiler B Knudsen Data

59

#define MY_VERSION 20
#define VER_STRING "1.02.0005"
/* VERSION : 01110 */

If the decimal number is 99, then the new number will be 100 and the file length increases by 1. If the
number is 099, then the file length remains the same. A version file should not be too large (up to 20k),
otherwise an error is printed.

Formats 2 and 3 above allows more than one version file. It is recommended to use conditional
compilation to manage several editions of the same program.

5.3 Environment Variables
Environment variables can be used to define include folders and primary folder:

Variable CCINC is an alternative to the -I<path> option. The compiler will only read this variable (or
specified variable) when using the following command line option:

-li : read default environment variable CCINC
-li<ENVI> : read specific environment variable

Variable CCHOME can be used to define the primary folder during compilation. The compiler will only
read this variable (or specified variable) when using the following command line option:

-lh : read default environment variable CCHOME
-lh<ENVP> : read specific environment variable

CC5X C Compiler B Knudsen Data

60

6 PROGRAM CODE

6.1 Program Code Pages
Many of the PICmicro devices have more than one code page. A code page contains 512 words on the 12
bit core and 2048 words on the 14 bit core. Using more than one code page requires #pragma statements.
All functions following a #pragma codepage statement are put on the page specified. Codepage 0 is used
as default.

/* functions proceeding the first codepage statement are placed on
codepage 0 */

#pragma codepage 2

char fx(void) { .. }
/* this function is placed on codepage 2 */

#pragma codepage 1

/* following functions are placed on codepage 1 */

When switching between codepages, the compiler will keep track on the next free location on each
codepage. Use of codepages is just a matter of optimization, as long as the compiler accepts the selection.
The optimal combination requires least code (or has a speed advantage). The optimizer removes
unnecessary setting and clearing of the page selection bits.

Some of the PICmicro devices have 4 code pages. Note that calls which requires switching between page
0 and 3, or page 1 and 2 requires more instructions than the other combinations.

The compiler produces an error message when page limits are exceeded. Invalid code pages are mapped
to valid ones.

Another way of locating functions
The statement #pragma location is capable of locating prototypes on codepages as well as function
definitions. The statement is useful when locating functions defined in library files, or when locating
functions in large programs. Its normal use is in limited regions in header files. The rules when using
#pragma location are:

1. A function prototype will locate the function on the desired codepage, even if the current active
codepage is different when the function definition is compiled.

2. #pragma location have higher priority than #pragma codepage.
3. '#pragma location -' restores the active codepage defined by the last #pragma codepage (or #pragma

origin).

#pragma location 1 // codepage 1
void f1(void); // assigned to codepage 1
void f2(void);
void f3(void);

#pragma location 3 // codepage 3
void f4(void);

#pragma location - // return to the active codepage
void f5(void); // this prototype is not located

CC5X C Compiler B Knudsen Data

61

Notes:
1. The location statements have to be compiled before the function definition
2. Functions not located are placed on the current active codepage
3. A warning is printed in case of conflicts

The #pragma location statement should only be used if required. An example is when functions inside a
module (file) have to be placed on different codepages, or if much tuning is required to find the optimal
combination. The #pragma codepage statement is normally sufficient.

The page type modifier
The page type modifiers page0..page3 can replace #pragma location/codepage.

page2 void fx(void) { .. } // in codepage 2
page1 char f2(char a); // in codepage 1

The page type modifier defines the codepage to locate the function in, both for function prototypes and
function definitions.

NOTE 1: The page type modifier have higher priority than both #pragma codepage and #pragma location

NOTE 2: When the codepage have been defined using the page type modifier or #pragma location, then
the location is fixed and can not be changed in the function definition or by using a second prototype.

Invalid code pages are mapped to valid ones.

Page selection bits
The page selection bits PA0 and PA1 are automatically updated by the compiler, and attempts to set or
clear these bits in the source code are removed by the optimizer. This can be switched off by the -j
command line option.

Core 12 note: assigning a value to the status register (f3) may cause the automatic updating to fail.

6.2 Subroutine Call Level Checking
Subroutine calls are limited to 2 levels for the 12 bit core and 8 levels for the 14 bit core. The compiler
automatically checks that this limit is not exceeded.

The compiler can replace CALL by GOTO to seemingly achieve deeper call levels.

1. When a function is called once only, the call can be replaced by a goto. All corresponding returns are
replaced by gotos. Call is NOT replaced by goto when:
a) The program counter (PCL) is manipulated in the user code (computed goto) in a function of

type char.
b) The number of return literal exceeds 10
c) The function is called from another codepage and the number of returns exceeds 10

2. Call followed by return is replaced by a single goto.

When subroutines are located in the second half of a codepage, it can not be called directly when using 12
bit core devices. The compiler automatically inserts links to such "hidden" subroutines.

Stack level checking when using interrupt
CC5X will normally assume that an interrupt can occur anywhere in the main program, also at the
deepest call level. An error message is printed if stack overflow may occur. This is not always true,

CC5X C Compiler B Knudsen Data

62

because the interrupt enable bits controls when interrupts are allowed. Sometimes the main program need
all 8 stack levels for making calls.

The -q<N> option force CC5X to assume that interrupt will NOT occur at the <N> deepest call levels of
the main program.

The application writer must then ensure that interrupt will not occur when executing functions at the
deepest <N> call levels, normally by using the global interrupt enable bit. CC5X will generate a warning
for the critical functions. (The normal error message is always generated when the application contains
more than 8 call levels.)

For example, the -q1 option generates a warning for functions calls that will put the return address at
stack level 8 (no free stack entry for interrupt). Using -q2 means an additional warning at stack level 7 if
the interrupt routine requires 2 levels, i.e. contains function calls.

It is NOT recommended to use the -q<N> as a default option.

Functions shared between independent call trees
An error message is normally printed when the compiler detects functions that are called both from
main() and during interrupt processing if this function contains local variables or parameters. This also
applies to math library calls and const access functions. The reason for the error is that local variables are
allocated statically and may be overwritten if the routine is interrupted and then called during interrupt
processing.

The error message will be changed to a warning by the following pragma statement. Note that this means
that local variable and parameter overwriting must be avoided by careful code writing.

#pragma sharedAllocation

Recursive functions
Recursive functions are possible. Please note that the termination condition have to be defined in the
application code, and therefore the call level checking can not be done by the compiler. Also note that the
compiler does not allow any local variables in recursive functions. Function parameters and local
variables can be handled by writing code that emulates a stack.

A warning is printed when the compiler detects a function which call itself directly or through another
function. This warning can be switched off with the -wr command line option.

6.3 Interrupts
The 14 bit core allows interrupts:
• external interrupt on RB0/INT pin
• external interrupt on port pins change, RB4:7
• internal interrupt on TMR0 overflow
• .. and other controller specific interrupts

The structure of the interrupt service routine is as follows:

#include "int16CXX.h"
#pragma origin 4

interrupt serverX(void)
{

// W and STATUS are saved by the next macro.
// PCLATH is also saved if necessary.

CC5X C Compiler B Knudsen Data

63

// The code produced is strongly CPU-dependent.

int_save_registers // W, STATUS (and PCLATH)
//char sv_FSR = FSR; // if required

// handle the interrupt

//FSR = sv_FSR; // if required
int_restore_registers // W, STATUS (and PCLATH)

}

/* IMPORTANT : GIE should normally NOT be set or cleared in
the interrupt routine. GIE is AUTOMATICALLY cleared on
interrupt entry by the CPU and set to 1 on exit (by
RETFIE). Setting GIE to 1 inside the interrupt service
routine will cause nested interrupts if an interrupt is
pending. Too deep nesting may crash the program ! */

/* IMPORTANT : It is NOT recommended to specify the interrupt
save style (i.e. INT_xxx_style) in the application. This
is done in the chip HEADER file (f.ex. 16F877.h). Wrong
register save style may cause strange problems and is very
difficult to trace. */

The keyword interrupt allows the routine to be terminated by a RETFIE instruction. It is possible to call a
function from the interrupt routine (it have to be defined by a prototype function definition first).

The interrupt routine requires at least one free stack location because the return address is pushed on the
stack. This is automatically checked by the compiler, even function calls from the interrupt routine.
However, if the program contains recursive functions, then the call level can not be checked by the
compiler.

The interrupt vector is permanently set to address 4. The interrupt service routine can only be located at
this address. The #pragma origin statement have to be used in order to skip unused program locations.

The following pragma statement will allow the interrupt routine to be placed anywhere. Note that the
compiler will NOT generate the link from address 4 to the interrupt routine.

#pragma unlockISR

Vital registers such as STATUS and W should be saved and restored by the interrupt routine. However,
registers that are not modified by the interrupt routine do not have to be saved. Saving and restoring
registers is device dependent. The file int16CXX.H contains recommended program sequences for saving
and restoring registers. The interrupt routine can also contain local variables. Storage for local variables is
allocated separately because interrupts can occur anytime.

CC5X also supports CUSTOM save and restore sequences. If you want to use your own register save and
restore during interrupt, please read the following Section Custom interrupt save and restore.

IMPORTANT: CC5X will AUTOMATICALLY check that the registers W, STATUS, PCLATH and
FSR are saved and restored during interrupt.

The compiler will detect if the FSR register is modified during interrupt processing without being saved
and restored. The supplied macros for saving and restoring registers will not save FSR. This have to be
done by user code when needed. If FSR is modified by a table or pointer access, or by direct writing, the

CC5X C Compiler B Knudsen Data

64

compiler will check that FSR is saved and restored, also in nested function calls. Note that the FSR
saving and restoring can be done in a local region surrounding the indexed access, and does not need to
be done in the beginning and end of the interrupt routine.

A warning is printed if FSR is saved but not changed. The error and warning messages printed can be
removed:

#pragma interruptSaveCheck n // no warning or error
#pragma interruptSaveCheck w // warning only
#pragma interruptSaveCheck e // error and warning (default)

Note that the above pragma also change the checking done on W, STATUS and PCLATH.

Custom interrupt save and restore
It is not required to use the above save and restore macros. CC5X also supports custom interrupt
structures.

A) You may want to use your own save and restore sequence. This can be done by inline assembly. If
CC5X does not accept your code, just insert (on your own risk):

#pragma interruptSaveCheck n // no warning or error

B) No registers need to be saved when using the following instructions in the interrupt routine. The
register save checking should NOT be disabled.

btss(bx1); // BTFSS 0x70,bx1 ; unbanked RAM/SFR only
bx2 = 1; // BSF 0x70,bx2 ; unbanked RAM/SFR only
bx1 = 0; // BCF 0x70,bx1 ; unbanked RAM/SFR only
btsc(bx1); // BTFSC 0x70,bx1 ; unbanked RAM/SFR only
sleep(); // SLEEP
vs = swap(vs); // SWAPF vs,1 ; unbanked RAM/SFR only
vs = incsz(vs); // INCFSZ vs,1 ; unbanked RAM/SFR only
nop(); // NOP
vs = decsz(vs); // DECFSZ vs,1 ; unbanked RAM/SFR only
clrwdt(); // CLRWDT

C) It is possible to enable interrupt only in special regions (wait loops) in such a way that W, STATUS,
PCLATH and FSR can be modified during interrupt without disturbing the main program. Note that
interrupt must ONLY be enabled in codepage 0 when PCLATH is not saved. The register save can then
be omitted and the save checking must be switched off to avoid the error messages:

#pragma interruptSaveCheck n // no warning or error

INTERRUPTS CAN BE VERY DIFFICULT. THE PITFALLS ARE MANY.

6.4 Startup and Termination Code
The startup code consists of a jump to main() which has to be located on page zero. No variables are
initiated. All initialization has to be done by user code. This simplifies design when using the watchdog
timer or MCLR pin for wakeup purposes.

The SLEEP instruction is executed when the processor exit main(). This stops program execution and the
chip enters the low power mode. Program execution may be restarted by a watchdog timer timeout or a
low state on the MCLR pin.

CC5X C Compiler B Knudsen Data

65

The 14 bit core also allows restart by interrupt. An extra GOTO is therefore inserted if main is allowed to
terminate (SLEEP). This ensures repeated execution of the main program. However, no extra GOTO is
added when a sleep() command is inserted anywhere else in the application program.

Clearing ALL RAM locations
The internal function clearRAM() will set all RAM locations to zero. The generated code use the FSR
register. The recommended usage is:

void main(void)
{

if (TO == 1 && PD == 1 /* power up */) {
WARM_RESET:

clearRAM(); // set all RAM to 0
}
..
if (condition)

goto WARM_RESET;
}

The code size and timing depends on the actual chip. The following table describes the basic types. Chip
devices not found here maps to one of the described types.

INS ICYC TOTCYC 4MHz RAM START LAST BANKS PICmicro
8 6 145 0.15ms 25 7 0x1F - 16C54
9 4 202 0.20ms 41 7 0x3F 2 16C509

13 4 290 0.29ms 72 8 0x7F 4 16C57
8 7 254 0.25ms 36 12 0x2F - 16C84
6 5 482 0.48ms 96 32 0x7F 1 16C620A

12 5 644 0.64ms 128 32 0xBF 2 12C671
9 4 770 0.77ms 176 32 0xFF 2 16C642
9 4 770 0.77ms 192 32 0xFF 2 16C74

10 4 771 0.77ms 192 32 0xFF 4 16C923
19 5 1110 1.11ms 224 32 0x14F 4 16C627
12 4 1058 1.06ms 256 32 0x17F 4 16C773
15 4 1807 1.81ms 368 32 0x1FF 4 16C77

INS: number of assembly instructions required
ICYC: cycles (4*clock) for each RAM location cleared
TOTCYC: total number of cycles (4*clock) required
4MHz: approx. time in milliseconds required at 4 MHz
RAM: total number of RAM locations
START: first RAM address
LAST: last RAM address
BANKS: number of RAM banks
PICmicro: chip type described

6.5 Library Support
The library support includes standard math and support for user defined libraries. The library files
should be included in the beginning of the application, but after the interrupt routine for all libraries
located on codepage 0.

// ..interrupt routine
#include “math16.h” // 16 bit integer math
#include “math24f.h” // 24 bit floating point
#include “math24lb.h” // 24 bit math functions

CC5X C Compiler B Knudsen Data

66

CC5X will automatically delete unused library functions. This feature can also be used to delete unused
application functions:

#pragma library 1
// library functions that are deleted if unused
#pragma library 0

Math libraries
Integer: 8, 16, 24 and 32 bit, signed and unsigned
Fixed point: 20 formats, signed and unsigned
Floating point: 16, 24 and 32 bit

All libraries are optimized to get compact code. All variables (except for the floating point flags) are
allocated on the generated stack to enable efficient RAM reuse with other local variables. A new concept
of transparent sharing of parameters in a library is introduced to save code.

Note that fixed point requires manual worst case analysis to get correct results. This must include
calculation of accumulated error and avoiding truncation and loss of significant bits. It is often straight
forward to get correct results when using floating point. However, floating point functions requires
significantly more code. In general, floating point and fixed point are both slow to execute. Floating point
is FASTER than fixed point on multiplication and division, but slower on most other operations.

Operations not found in the libraries are handled by the built in code generator. Also, the compiler will
use inline code for operations that are most efficient handled inline.

The following command line options are available:
-we : no warning when fixed point constants are rounded
-wO : warning on operator library calls
-wi : no warning on multiple inline math integer operations
-wm : no warning on single call to math integer function

Integer libraries
The math integer libraries allows selection between different optimizations, speed or size. The libraries
contains operations for multiplication, division and division remainder.

math16.h : basic library, up to 16 bit
math24.h : basic library, up to 24 bit
math32.h : basic library, up to 32 bit

math16m.h: speed, size, 8*8, 16*16
math24m.h: speed, size, 8*8, 16*16, and 24*8 multiply
math32m.h: speed, size, 8*8, 16*16, and 32*8 multiply

The math??m.h libraries can be used when execution speed is critical.
NOTE 1: they must be included first (before math??.h)
NOTE 2: math??.h contains similar functions (which are deleted)

The min and max timing cycles are approximate only.

Sign: -: unsigned, S: signed

CC5X C Compiler B Knudsen Data

67

Sign Res=arg1 op arg2 Program Approx. CYCLES

A:math32.h
B:math24.h
C:math16.h Code min aver max

ABC - 16 = 8 * 8 13 83 83 83
ABC S 16 = 8 * 8 21 85 85 85
ABC S/- 16 = 16 * 16 18 197 222 277
.B. S 24 = 16 * 16 35 220 261 334
A.. S 32 = 16 * 16 42 223 253 313
A.. - 32 = 16 * 16 22 215 240 295
AB. - 24 = 16 * 8 15 198 198 198
..C - 16 = 16 * 8 16 179 179 179
.B. - 24 = 24 * 8 16 247 247 247
A.. - 32 = 32 * 8 17 356 356 356
.B. - 24 = 24 * 16 26 217 263 361
A.. - 32 = 32 * 16 31 239 310 447
.B. - 24 = 24 * 24 25 337 410 553
A.. S/- 32 = 32 * 32 31 513 654 929

ABC - 16 = 16 / 8 18 235 235 235
AB. - 24 = 24 / 8 19 368 368 368
A.. - 32 = 32 / 8 20 517 517 517
ABC - 16 = 16 / 16 25 287 291 335
.B. - 24 = 24 / 16 31 481 512 633
A.. - 32 = 32 / 16 32 665 718 873
.B. - 24 = 24 / 24 36 564 576 732
A.. - 32 = 32 / 32 47 943 966 1295

ABC S 16 = 16 / 8 33 196 201 211
AB. S 24 = 24 / 8 37 305 310 326
A.. S 32 = 32 / 8 41 430 436 457
ABC S 16 = 16 / 16 49 296 309 361
.B. S 24 = 24 / 16 53 450 473 543
A.. S 32 = 32 / 16 57 626 660 747
.B. S 24 = 24 / 24 66 573 597 762
A.. S 32 = 32 / 32 83 952 990 1329

ABC - 8 = 16 % 8 18 226 226 226
.B. - 8 = 24 % 8 19 354 354 354
A.. - 8 = 32 % 8 20 502 502 502
ABC - 16 = 16 % 16 23 280 283 312
.B. - 16 = 24 % 16 29 463 497 599
A.. - 16 = 32 % 16 30 636 698 828
.B. - 24 = 24 % 24 34 556 567 700
A.. - 32 = 32 % 32 45 934 955 1254

ABC S 8 = 16 % 8 30 189 190 195
.B. S 8 = 24 % 8 35 291 292 300
A.. S 8 = 32 % 8 39 413 415 425
ABC S 16 = 16 % 16 46 290 297 332
.B. S 16 = 24 % 16 50 442 455 501
A.. S 16 = 32 % 16 54 614 634 692
.B. S 24 = 24 % 24 66 567 584 725
A.. S 32 = 32 % 32 86 944 974 1284

CC5X C Compiler B Knudsen Data

68

A:math32m.h
B:math24m.h
C:math16m.h Code min aver max

ABC - 16 = 8 * 8 37 50 50 50
ABC S/- 16 = 16 * 16 23+37 74 147 158
.B. - 24 = 24 * 8 32+37 124 162 166
A.. - 32 = 32 * 8 43+37 178 212 222

Fixed point libraries
math16x.h : 16 bit fixed point, 8_8, signed and unsigned
math24x.h : 24 bit fixed point 8_16, 16_8, signed and unsigned
math32x.h : 32 bit fixed point 8_24, 16_16, 24_8, signed and unsigned

The libraries can be used separately or combined.

The timing stated is measured in instruction cycles (4*clock) and includes parameter transfer, call, return
and assignment of the return value. The timing values are found by executing a large number of iterations
using selected argument values.

Sign: -: unsigned, S: signed

Sign Res=arg1 op arg2 Program Approx. CYCLES

math16x.h: Code min aver max
S 8_8 = 8_8 * 8_8 47 226 263 339
- 8_8 = 8_8 * 8_8 23 214 252 326
S 8_8 = 8_8 / 8_8 51 497 518 584
- 8_8 = 8_8 / 8_8 35 528 558 680

math24x.h: Code min aver max
S 16_8 = 16_8 * 16_8 60 376 450 577
- 16_8 = 16_8 * 16_8 27 364 437 580
S 16_8 = 16_8 / 16_8 68 850 893 1093
- 16_8 = 16_8 / 16_8 46 894 944 1222

S 8_16 = 8_16 * 8_16 60 354 428 555
- 8_16 = 8_16 * 8_16 28 342 415 558
S 8_16 = 8_16 / 8_16 68 1050 1116 1349
- 8_16 = 8_16 / 8_16 46 1104 1188 1520

math32x.h: Code min aver max
S 24_8 = 24_8 * 24_8 77 558 722 983
- 24_8 = 24_8 * 24_8 35 546 709 1026
S 24_8 = 24_8 / 24_8 85 1298 1366 1761
- 24_8 = 24_8 / 24_8 57 1361 1432 1929

S 16_16= 16_16*16_16 78 561 704 930
- 16_16= 16_16*16_16 36 549 690 965
S 16_16= 16_16/16_16 85 1546 1650 2097
- 16_16= 16_16/16_16 57 1617 1733 2305

S 8_24 = 8_24 * 8_24 77 529 672 896
- 8_24 = 8_24 * 8_24 35 517 658 933
S 8_24 = 8_24 / 8_24 85 1794 1936 2433
- 8_24 = 8_24 / 8_24 57 1872 2033 2680

CC5X C Compiler B Knudsen Data

69

Floating point libraries

math16f.h : 16 bit floating point basic math
math24f.h : 24 bit floating point basic math
math24lb.h : 24 bit floating point library
math32f.h : 32 bit floating point basic math
math32lb.h : 32 bit floating point library

NOTE: The timing values includes parameter transfer, call and return and also assignment of the return
value.

Basic 32 bit math: Approx. CYCLES
Size min aver max

a * b: multiplication 91 380 468 553
a / b: division 125 523 610 742
a + b: addition 182 39 135 225
a - b: subtraction add+5 46 142 232
int32 -> float32 79 45 69 118
float32 -> int32 86 36 77 143

Basic 24 bit math: Approx. CYCLES
Size min aver max

a * b: multiplication 77 226 261 294
a / b: division 102 323 359 427
a + b: addition 152 33 114 173
a - b: subtraction add+5 40 121 180
int24 -> float24 62 36 64 106
float24 -> int24 74 31 72 117

Basic 16 bit math: Approx. CYCLES
Size min aver max

a * b: multiplication 62 104 107 114
a / b: division 82 137 154 171
a + b: addition 118 27 86 130
a - b: subtraction add+5 34 93 137
int16 -> float16 72 40 71 107
float16 -> int16 53 26 60 98

The following operations are handled by inline code: assignment, comparing with constants,
multiplication and division by a multiple of 2 (i.e. a*0.5, b * 1024.0, c/4.0)

Floating point library functions

float24 sqrt(float24); // square root
Input range: positive number including zero
Accuracy: ME:1, relative error: 1.5*10**-5 (*)
Timing: min aver max 645 700 758 (**)
Size: 62 words
Minimum complete program example: 79 words

float32 sqrt(float32); // square root
Input range: positive number including zero
Accuracy: ME:1, relative error: 6*10**-8 (*)
Timing: min aver max 1174 1303 1415 (**)
Size: 76 words
Minimum complete program example: 97 words

CC5X C Compiler B Knudsen Data

70

float24 log(float24); // natural log function
Input range: positive number above zero
Accuracy: ME:1, relative error: < 1.5*10**-5 (*)
Timing: min aver max 2179 3075 3299 (**)
Size: 214 words + basic 24 bit math library
Minimum complete program example: 623 words

float32 log(float32); // natural log function
Input range: positive number above zero
Accuracy: ME:1, relative error: < 6*10**-8 (*)
Timing: min aver max 3493 4766 5145 (**)
Size: 265 words + basic 32 bit math library
Minimum complete program example: 762 words

float24 log10(float24); // log10 function
Input range: positive number above zero
Accuracy: ME:1-2, relative error: < 3*10**-5 (*)
Timing: min aver max 2435 3333 3569 (**)
Size: 15 words + size of log()
Minimum complete program example: 638 words

float32 log10(float32); // log10 function
Input range: positive number above zero
Accuracy: ME:1-2, relative error: < 1.2*10**-7 (*)
Timing: min aver max 3935 5229 5586 (**)
Size: 17 words + size of log()
Minimum complete program example: 779 words

float24 exp(float24); // exponential (e**x) function
Input range: -87.3365447506, +88.7228391117
Accuracy: ME:1, relative error: < 1.5*10**-5 (*)
Timing: min aver max 1969 3026 3264 (**)
Size: 251 words + 102(floor24) + basic 24 bit math
Minimum complete program example: 673 words

float32 exp(float32); // exponential (e**x) function
Input range: -87.3365447506, +88.7228391117
Accuracy: ME:1, relative error: < 6*10**-8 (*)
Timing: min aver max 4465 4741 5134 (**)
Size: 322 words + 145(floor32) + basic 32 bit math
Minimum complete program example: 847 words

float24 exp10(float24); // 10**x function
Input range: -37.9297794537, +38.531839445
Accuracy: ME:1, relative error: < 1.5*10**-5 (*)
Timing: min aver max 1987 3005 3194 (**)
Size: 256 words + 102(floor24) + basic 24 bit math
Minimum complete program example: 678 words

float32 exp10(float32); // 10**x function
Input range: -37.9297794537, +38.531839445
Accuracy: ME:1, relative error: < 6*10**-8 (*)
Timing: min aver max 3605 4716 5045 (**)
Size: 326 words + 145(floor32) + basic 32 bit math
Minimum complete program example: 851 words

CC5X C Compiler B Knudsen Data

71

float24 sin(float24); // sine, input in radians
float24 cos(float24); // cosine, input in radians

Input range: -512.0, +512.0
Accuracy: error: < 3*10**-5 (*)
The relative error can be larger when the output is
near 0 (for example near sin(2*PI)), but the
absolute error is lower than the stated value.
Timing: min aver max 396 2492 2746 (**)
Size: 215 words + basic 24 bit math library
Minimum complete program example: 595 words

float32 sin(float32); // sine, input in radians
float32 cos(float32); // cosine, input in radians

Input range: -512.0, +512.0 : Can be used over a
much wider range if lower accuracy is accepted
(degrades gradually to 1 significant decimal digit
at input value 10**6)
Accuracy: error: < 1.2*10**-7 (*)
The relative error can be larger when the output is
near 0 (for example near sin(2*PI)), but the
absolute error is lower than the stated value.
Timing: min aver max 543 5220 5855 (**)
Size: 357 words + basic 32 bit math library
Minimum complete program example: 818 words

(*) The accuracy of the math functions have been checked using many thousands of calculations. ME=1
means that the mantissa value can be wrong by +/- 1 (i.e. 1 bit). The relative error is then 1.5*10-5 for 24
bit floating point, and 6*10-8 for 32 bit floating point. Only a small fraction of the calculations may have
the stated error.

(**) The min and max timing stated have been found by simulating many thousands calculations.
However, the min and max limits are approximate only. All timing is measured in instruction cycles.
When using a 4 MHz oscillator, one instruction cycle is 1 microsecond.

Fast and compact inline operations
The compiler will use inline code for efficiency at some important operations:

Integer:
- converting to left and right shifts: a * 8, a / 2
- selecting high/low bytes/words: a / 256, a % 256, b % 0x10000
- replacing remainder by AND operation: a % 64, a % 0x80

Fixed Point:
- converting to left and right shifts: a * 8, a / 2
- all operations except multiplication and division are implemented inline

Floating point:
- add/sub (incr/decr) of exponent: a * 128.0, a / 2
- operations == and != : a == b, a != 0.0
- comparing with constants: a > 0, a <= 10.0
- inverting the sign bit: a = -a, b = -a

Combining inline integer math and library calls
It is possible to force the compiler to generate inline integer math code after a math library is included.
This may be useful when speed is critical or in the interrupt service routine. Functions with parameters or

CC5X C Compiler B Knudsen Data

72

local variables are not reentrant because local variables are mapped to global addresses, and therefore the
compiler will not allow calls from both main and the interrupt service routine to the same function.

uns16 a, b, c;
..
a = b * c; // inline code is generated
..

#include "math16.h"
..
a = b * c; // math library function is called
..

#pragma inlineMath 1
a = b * c; // inline code is generated

#pragma inlineMath 0
..
a = b * c; // math library function is called

Inline type modifier on math operations
It is possible to combine inline integer math and math library functions without making a special purpose
math library. This is done by stating that the selected operations are inline BEFORE the standard math
library is included. It is optimal to use inline code when there is only one operation of a certain type.

inline uns24 operator * (uns24 arg1, uns24 arg2);
#include "math24.h"

The math prototypes are found in the beginning of the standard math libraries. Just remember to remove
the operator name before adding the inline type modifier.

A warning is printed when there is ONE call to a unsigned integer math library function. The warning can
be disabled by the -wm command line option.

NOTE that the inline type modifier is currently IGNORED, except for the math operations.

Detection of multiple inline math integer operations
The compiler will print a warning when detecting more than one inline math integer operation of the
same type. Including a math library will save code, but execute slightly slower. Note that assembly code
inspection and type casts are sometimes needed to reduce the number of library functions inserted.

The warning can be disabled by the -wi command line option.

Using prototypes and multiple code pages
Using floating point on the 12 bit core where each codepage is 512 words will be challenging. It is
normally not required to define prototypes, even when using many code pages. If you want to place the
library functions to a certain codepage, this is easiest done by:

#pragma codepage 1
#include "math24f.h"
#pragma codepage 0

Prototypes can be used when functions are called before they are defined. Note that operator functions
need a function name to be defined as prototypes.

Also note that the compiler use a linear search from the beginning of the operator table until a match for
the current operation is found. The operator definition/prototype sequence may therefore influence the
operator selected.

CC5X C Compiler B Knudsen Data

73

It is not recommended to modify the libraries by adding 'pragma codepage' between the functions.
Instead, prototypes and 'pragma location' or the page type modifier makes function placement easier to set
up and tune. For example, placing the division function on codepage 1 and the other on the default
codepage can be done by:

..
#include "my_math.h"
..
#include "math24f.h"
..

//--------- beginning-of-file my_math.h --------------
float24 operator* _fmul24(sharedM float24 arg1, sharedM float24
arg2);
page1 float24 operator/ _fdiv24(sharedM float24 arg1, sharedM float24
arg2);
float24 operator+ _fadd24(sharedM float24 arg1, sharedM float24
arg2);
// .. etc.
//--------- end-of-file my_math.h --------------

Fixed point example
#pragma chip PIC16C73
#include "math24x.h"
uns16 data;
fixed16_8 tx, av, mg, a, vx, prev, kp;

void main(void)
{

vx = 3.127;
tx += data; // automatic type cast
data = kp; // assign integer part
if (tx < 0)

tx = -tx; // make positive
av = tx/20.0;
mg = av * 1.25;
a = mg * 0.98; // 0.980469, error: 0.000478
prev = vx;
vx = a/5.0 + prev;
kp = vx * 0.036; // 0.03515626, error: 0.024
kp = vx / (1.0/0.036); // 27.7773437

}

CODE: 274 instructions including library (130)

Floating point example
CODE: 635 instructions including library (470). The statements are identical to the above fixed point
example to enable code size comparison.

#pragma chip PIC16C73
#include "math24f.h"
uns16 data;
float tx, av, mg, a, vx, prev, kp;

CC5X C Compiler B Knudsen Data

74

void main(void)
{

InitFpFlags(); // enable rounding as default
vx = 3.127;
tx += data; // automatic type cast
data = kp; // assign integer part
if (tx < 0)

tx = -tx; // make positive
av = tx/20.0;
mg = av * 1.25;
a = mg * 0.98;
prev = vx;
vx = a/5.0 + prev;
kp = vx * 0.036;
kp = vx / (1.0/0.036);

}

How to save code
Choices that influence code size:

1. What libraries to include (24/32 bit float or fixed point)

2. Rounding can be disabled permanently.
#define DISABLE_ROUNDING
#include "math32f.h"

3. Optimization, currently available on division only. Note that speed is default. Also note that the saving
is only 5 - 7 instructions. Timing difference is up to 15-20 percent.
#define FP_OPTIM_SIZE // optimize for SIZE
#define FP_OPTIM_SPEED // optimize for SPEED: default

The recommended strategy is to select a main library for the demanding math operations. Different
floating and fixed point operations should only be mixed if there is a good reason for it.

Mixing different data types is possible to save code and RAM space. For example using a small type in
an array and a larger type for the math operations.

So, first decide what math library to include. For floating point the main decision is between the 24 bit or
the 32 bit library. If you use 32 bit operations, this can be combined with 24 (and 16) bit floating point
types to save RAM.

Automatic type conversion:
integer <-> float/double
integer <-> fixed point
float <-> double
fixed point <-> float/double : requires additional functions

In general, using the smallest possible data type will save code and RAM space. This must be balanced
against the extra work to analyze the program to prevent overflow and too large accumulated errors. If
there is plenty of code space in the controller, and timing is no problem, then large types can be used.
Otherwise analysis is required to get optimal selections.

It is recommended to keep the number of called library functions as low as possible. Although function
selection is done automatically by the compiler, it is possible to use type casts or even make a custom
library by copying the required functions from existing libraries. All libraries are written in C. CC5X can
print a warning for each operator function that is called (option -wO).

CC5X C Compiler B Knudsen Data

75

6.6 Inline Assembly
The CC5X compiler supports inline assembly located inside a C function. There are some restrictions
compared to general assembly. First, it is only possible to CALL other functions. Second, GOTO is
restricted to labels inside the function. If these restrictions makes program design too difficult, consider
using the linker support and link C and assembly modules using MPLINK.

#asm
.. assembly instructions
#endasm

Features:
• many assembly formats
• equ statements can be converted to variable definitions
• macro and conditional assembly capabilities
• call C functions and access C variables
• C style comments is possible
• optional optimization
• optional automatic bank and page updating

Note that the file inline.h is for emulating inline assembly, and should NOT be included when using real
inline assembly. The compiler does not optimize inline assembly or update the bank or page bits unless it
is instructed to do so.

Inline assembly is NOT C statements, but are executed in between the C statements. It is not
recommended to write the code like this:
if (a==b)

#asm
nop // this is not a C statement (by definition)

#endasm
a = 0; // THIS is the conditional statement!!!

Inline assembly supports DW. This can be used to insert data or special instructions. CC5X will assume
that the data inserted are instructions, but will not interpret or know the action performed. Bank selection
bits are assumed to be undefined when finishing executing DW instructions. PCLATH bit 3 (and 4) must
remain unchanged or restored to correct value if more than one code page is available on the device.
Example use is found in startup.txt.

#asm
DW 0x3FFF ; any data or instruction
DW /*CALL*/ 0x2000 + ADDRESS

#endasm

Assembly instructions are not case sensitive. However, variables and symbols requires the right lower or
upper case on each letter.

clrw
Nop
NOP

The supported operand formats are:
k EXPR
f VAR + EXPR
f,d VAR + EXPR, D
f,b VAR + EXPR, EXPR
a LABEL or FUNCTION_NAME

CC5X C Compiler B Knudsen Data

76

EXPR := [EXPR OP EXPR | (EXPR) | -EXPR]
EXPR := a valid C constant expression, plus assembly extensions

Constant formats:
MOVLW 10 ; decimal radix is default
MOVLW 0xFF ; hexadecimal
MOVLW 0b010001 ; binary (C style)
MOVLW 'A' ; a character (C style)
MOVLW .31 ; decimal constant
MOVLW .31 + 20 - 1 ; plus and minus are allowed
MOVLW H'FF' ; hexadecimal (radix 16)
MOVLW h'0FF'
MOVLW B'011001' ; binary (radix 2)
MOVLW b'1110.1101'
MOVLW D'200' ; decimal (radix 10)
MOVLW d'222'
MOVLW MAXNUM24EXP ; defined by EQU or #define
;MOVLW 22h ; NOT allowed

Formats when loading then result into the W register:

decf ax,0
iorwf ax,w
iorwf ax,W

Formats when writing the result back to the RAM register:
decf ax
decf ax,1
iorwf ax,f
iorwf ax,F

Bit variables are accessed by the following formats:

bcf Carry
bsf Zero_
bcf ax,B2 ; B2 defined by EQU or #define
bcf ax,1
bcf STATUS,Carry ; Carry is a bit variable

Arrays, structures and variables larger than 1 byte can be accessed by using an offset.
clrf a32 ; uns32 a32; // 4 bytes
clrf a32+0
clrf a32+3
clrf tab+9 ; char tab[10];
; clrf tab-1 ; not allowed

Labels can start anywhere on the line:

goto LABEL4
LABEL1
:LABEL2
LABEL3:
LABEL4 nop
nop
goto LABEL2

CC5X C Compiler B Knudsen Data

77

Functions are called directly. A single unsigned 8 bit parameter can be transferred using the W register.

movlw 10
call f1 ; equivalent to f1(10);

The ONLY way to transfer multiple parameters (and parameters different from 8 bit) is to end assembly
mode, use C syntax and restart assembly mode again.

#endasm
func(a, 10, e);
#asm

Some instructions are disabled, depending on core type:

option ; 12 bits core only
tris PORTA ; 12 bits core only
movwf OPTION ; 14 bits core only
movwf TRISA ; 14 bits core only

The EQU statement can be used for defining constants. Assembly blocks containing EQU's only can be
put outside the functions. Note that Equ constants can only be accessed in assembly mode. Constants
defined by #define can be used both in C and assembly mode.

#asm
B0 equ 0
B7 equ 7
MAXNUM24EXP equ 0xFF
#endasm

Equ can also be used to define variable addresses. However, the compiler do not know the know the
difference between an Equ address and an Equ constant until it is used by an instruction. When an Equ
symbol is used as a variable, that location is disabled for use by other variables. The symbol then changes
from an Equ symbol to a variable symbol and is made available in C mode also. There is a slight danger
in this logic. DO NOT USE a series of Equ's to define an array. If one of the locations are not read or
written directly, the compiler will not know that it is a part of an array and may use it for other purposes.
Reading and writing through FSR and INDF is not used to transform equ definitions. Therefore, define
arrays by using C syntax (or #pragma char).

// enable equ to variable transformation
#pragma asm2var 1
..
A1 equ 0x20
..
CLRF A1
;A1 is changed from an equ constant to a char variable

The following address operations is possible when the variable (structure/array) is set to a fixed address:

char tab[5] @ 0x110;
struct { char x; char y; } stx @ 0x120;
#asm
MOVLW tab
MOVLW &tab[1]
MOVLW LOW &tab[2]
MOVLW HIGH &tab[2]
MOVLW UPPER &tab[2]

CC5X C Compiler B Knudsen Data

78

MOVLW HIGH (&tab[2] + 2)
MOVLW HIGH (&stx.y)
MOVLW &stx.y
MOVLW &STATUS
#endasm

Comments types allowed in assembly mode:

NOP ; a comment
NOP // C style comments are also valid
/*
CLRW ;
NOP /* nested C style comments are also valid */
*/

Conditional assembly is allowed. However, the C style syntax have to be used.

#ifdef SYMBOLA
nop
#else
clrw
#endif

C style macros can contain assembly instructions, and also conditional statements. Note that the compiler
does not check the contents of a macro when it is defined.

#define UUA(a,b)\
clrw\
movlw a \
#if a == 10 \
nop \
#endif \
clrf b

UUA(10,ax)
UUA(9,PORTA)

Note that labels inside a makro often need to be supplied as a parameter if the makro is used more than
once. Also note that there should always be a backslash '\' after a #endasm in a macro to avoid
error messages when this macro is expanded in the C code. This applies to all preprocessor statements
inside macro's.

#define waitX(uSec, LBM) \
#asm \

LBM: \
NOP \
NOP \
DECFSZ uSec,1 \
GOTO LBM \

#endasm \

waitX(i, LL1);
waitX(i, LL2);

Most preprocessor statements can be used in assembly mode:
#pragma return[] = "Hello"

CC5X C Compiler B Knudsen Data

79

The compiler can optimize and perform bank and page updating in assembly mode. This does not happen
automatically, but has to be switched on in the source code. It is normally safe to switch on optimization
and bank/page updating. Instructions updating the bank and page register are removed before the
compiler insert new instructions. If the assembly contains critical timing, then the settings should be left
off, at least in local regions.

// default local assembly settings are b- o- p-
#pragma asm default b+ o+ // change default settings

#asm // using default local settings
#endasm

#asm b- o- p+ // define local settings
#pragma asm o+ // change setting in assembly mode
#endasm // end current local settings

Interpretation:
o+ : current optimization is performed in assembly mode
o- : no optimization in assembly mode
b+ : current bank bit updating is performed in assembly mode
b- : no bank bit update in assembly mode
p+ : current page bit updating is performed in assembly mode
p- : no page bit update in assembly mode

Note that b+ o+ p+ means that updating is performed if the current setting in C mode is on. Updating is
NOT performed if it is switched off in the C code when assembly mode starts. The command line options
-b, -u, -j will switch updating off globally. The corresponding source code settings are then ignored.

Direct coded instructions
The file “hexcodes.h” contains C macro's that allow direct coding of instructions.

Note that direct coded instructions are different from inline assembly seen from the compiler. The
compiler will view the instruction codes as values only and not as instructions. All high level properties
are lost. The compiler will reset optimization, bank updating, etc. after a DW statement.

Example usage:
#include "hexcodes.h"
..
// 1. In DW statements:
#asm
DW __SLEEP // Enter sleep mode
DW __CLRF(__INDF) // Clear indirectly
DW __ANDLW(0x80) // W = W & 0x80;
DW __DECF(__FSR,__F) // Decrement FSR
DW __BCF(__STATUS,__Carry) // Clear Carry bit
DW __GOTO(0) // Goto address 0
#endasm
..
// 2. In cdata statements:
#pragma cdata[1] = __GOTO(0x3FF)

Generating single instructions using C statements
The file INLINE.H describes how to emulate inline assembly using C code. This allows single
instructions to be generated. Intended usage is mainly for code with critical timing.

CC5X C Compiler B Knudsen Data

80

The compiler will normally generate single instructions if the C statements are simple. Remember to
inspect the generated assembly file if the application algorithm depends upon a precisely defined
instruction sequence. The following example show how to generate single instructions from C code.

nop(); // NOP
f = W; // MOVWF f
W = 0; // CLRW
f = 0; // CLRF f
W = f - W; // SUBWF f,W
f = f - W; // SUBWF f
W = f - 1; // DECF f,W
f = f - 1; // DECF f
W = f | W; // IORWF f,W
f = f | W; // IORWF f
W = f & W; // ANDWF f,W
f = f & W; // ANDWF f
W = f ^ W; // XORWF f,W
f = f ^ W; // XORWF f
W = f + W; // ADDWF f,W
f = f + W; // ADDWF f
W = f; // MOVF f,W
W = f ^ 255; // COMF f,W
f = f ^ 255; // COMF f
W = f + 1; // INCF f,W
f = f + 1; // INCF f
W = decsz(i); // DECFSZ f,W
f = decsz(i); // DECFSZ f
W = rr(f); // RRF f,W
f = rr(f); // RRF f
W = rl(f); // RLF f,W
f = rl(f); // RLF f
W = swap(f); // SWAPF f,W
f = swap(f); // SWAPF f
W = incsz(i); // INCFSZ f,W
f = incsz(i); // INCFSZ f
b = 0; // BCF f,b
b = 1; // BSF f,b
btsc(b); // BTFSC f,b
btss(b); // BTFSS f,b
OPTION = W; // OPTION (MOVWF on core 14)
sleep(); // SLEEP
clrwdt(); // CLRWDT
TRISA = W; // TRIS f (MOVWF on core 14)
return 5; // RETLW 5
s1(); // CALL s1
goto X; // GOTO X
nop2(); // GOTO next address (delay 2 cycles)
W = 45; // MOVLW 45
W = W | 23; // IORLW 23
W = W & 53; // ANDLW 53
W = W ^ 12; // XORLW 12

Addition for the 14 bit core:
W = 33 + W; // ADDLW 33
W = 33 - W; // SUBLW 33
return; // RETURN
retint(); // RETFIE

CC5X C Compiler B Knudsen Data

81

6.7 Optimizing the Code
The CC5X compiler contains an advanced code generator which is designed to generate compact code.
For example when comparing a 32 bit unsigned variable with a 32 bit constant, this normally requires 16
(or 15) instructions. When comparing a 32 bit variable with 0, this count is reduced to 6 (or 5). The code
generator detects and take advantage of similar situations to enable compact code.

Most of the code is generated inline, even multiplication and division. However, if many similar and
demanding math operations have to be performed, then it is recommended to include a math library.

Optimized syntax
Bit toggle now use the W register to get compact code:

bit b;
b = !b; // MOVLW K, XORWF var

Testing multiple bits of 16 bit variables or greater:

uns16 x;
if (x & 0xF0)
if (!(x & 0x3C))
if ((x & 0xF00) == 0x300)
if ((x & 0x7F00) < 0x4000)

Testing single bits using the '&' operator:

if (a & 0x10) // BTFSC/BTFSS a,4
if (!(a & 0x80)) // BTFSS/BTFSC a,7
if ((a16 & 0x200) == 0) // BTFSS/BTFSC a16+1,1

Peephole optimization
Peephole optimizing is done in a separate compiler pass which removes superfluous instructions or
rewrite the code by using other instructions. This optimization can be switched off by the -u command
line option. The optimization steps are:

1) redirect goto to goto
2) remove superfluous gotos
3) replace goto by skip instructions
4) replace INCF and DECF by INCFSZ and DECFSZ
5) remove instructions that affects the zero- flag only.
6) remove superfluous updating of PA0 and PA1
7) remove other superfluous instructions
8) remove superfluous loading of the W register

NOTE: Optimization can also be switched on or off in a local region. Please refer to the #pragma
optimize statement for more details.

; while (1) {
; if (Carry == 0) {

m001 BTFSC status,Carry
GOTO m004 ; REDIRECTED TO m001 (1)

; i++;
INCF i ; REPLACED BY INCFSZ (4)

; if (i != 0)
MOVF i ; REMOVED (5)
BTFSS status,Zero_ ; REMOVED (4)

CC5X C Compiler B Knudsen Data

82

GOTO m002 ; REMOVED (3)
; var++;

INCF var
; test += 2;

m002 MOVLW .2
ADDWF test

; if (test == 0)
MOVF test ; REMOVED (5)
BTFSS status,Zero_ ; REPLACED BY BTFSC (3)
GOTO m003 ; REMOVED (3)

; break;
GOTO m005

; W = var;
m003 MOVF var,W

; if (W == 0)
XORLW .0 ; REMOVED (5)
BTFSS status,Zero_
GOTO m004 ; REDIRECTED TO m001 (1)

; break;
GOTO m005 ; REMOVED (7)

m004 GOTO m001 ; REMOVED (2)
; sub1();

m005 BSF status,PA0
CALL sub1
BCF status,PA0 ; REMOVED (6)

; sub2();
BSF status,PA0 ; REMOVED (6)
BSF status,PA1
CALL sub2
BCF status,PA0
BCF status,PA1

6.8 Linker Support
CC5X supports the relocatable assembly format defined by Microchip. This means that MPLINK can be
used to link code modules generated by CC5X, including MPASM assembly modules. There are many
details to be aware of. It is therefore recommended to read this file carefully. The important issues are
related to:

• external functions and variables
• ram bank updating
• page bit updating
• call level checking
• MPLINK script files
• MPLAB integration

The command line option '-r' (or ‘-r2’) makes CC5X generate relocatable assembly. This file is then
assembled by MPASM and linked together with other C and assembly modules by MPLINK. This can
automated by using 'make' to build the whole application in several stages.

NOTE that if you need the application program to be as compact as possible, then it is recommended to
use only ONE C module. Source code modularity is obtained by using many C files and include these in
the main C module by using #include.

Command line options:
-r : generate relocatable assembly (no hex file)

CC5X C Compiler B Knudsen Data

83

-r2[=][<file.lkr>]: use separate section for interrupt
-rx : make variables static by default

External assembler options:
-x<file> : -x"C:\Program Files\Microchip\MPASM Suite\mpasmwin.exe"
-X<option> : assembler option: -X/q (all options must be separate)

Assembly file options (normally not used):
-rp<N> : name on codepage 0 is PROG<N>, default PROG1
-rb<N> : name on RAM bank 0 is BANK<N>, default BANK0
-ro<N> : add offset <N> on local variable block name

Using MPLINK or a single module
Currently it is best to use a single C module for several reasons. MPLINK support was mainly offered to
enable asm modules to be added.

Limitations when using MPLINK:
1. Asm mode debugging only (C source code appear as comments)
2. Multiple C modules does not allow the static local variable stack to be calculated for the whole

program, meaning that much more RAM space will be used for local variables.
3. Call level checking must be done manually
4. Computed goto will be slower because the compiler can not check 256 byte address boundary

crossing.
5. Inefficient RAM bank updating, meaning mode code.

The main reasons for using multiple modules is probably:
1. Faster build: However, CC5X is increadible fast. MPASM doing much simpler tasks is 3 times

slower.
2. Module separation: However, sufficient module separation can be achieved by using multiple C files.
3. Asm modules: Inline ASM is supported by CC5X.

C modules can be merged into a single module and still be viewed as single modules. Such C
modules can be used in several projects without modification. The procedure is as follows:

1. Include the “separate modules” into the main module:

#include "module1.c"
#include "module2.c"
// ..
#include "moduleN.c"
// ..
void main(void) { .. }

2. Each merged “module” includes the required header files. This can be header files specific for the
“module” or common header files:

#include "header1.h"
#include "header2.h"
// ..
#include "headerN.h"
// ..
// module functions

3. If the same header file is included in more than one “module”, it will be required to prevent compiling
the same header file definitions more than once. This is done by using the following header file framing:

CC5X C Compiler B Knudsen Data

84

#ifndef _HEADER_N_Symbol // the first header file line
#define _HEADER_N_Symbol // compile this line once only
// ..
// header definitions as required
// ..
#endif // the last header file line

Variables and pointers
Variables defined in other module can be accessed. CC5X needs to know the type, and this is done by
adding 'extern' in front of a variable definition.

extern char a;

All global variables that are not 'static' are made available for other modules automatically. CC5X inserts
'GLOBAL' statements in the generated assembly file.

CC5X will generate a 'MOVLW LOW (var_name+<offset>)' when using the address operators
'&var_name'.

Global bit variables is a challenge. It is recommended to first define a char variable and then use 'bit bx @
ch.0;'. Otherwise CC5X will defines a global char variable with random name. This name have the format
'_Gbit<X><X>' where <X> is a (more or less) random selected letter. This variable is reserved by a RES
statement and used in the assembly file when generating relocatable assembly.

bit b1;
b1 = 0; // BCF _GbitQB+0,0

The variable file (*.var) is slightly modified when generating relocatable assembly. Note that most
addresses stated in the variable file are reallocated by MPLINK.

Option -rx will make variables static by default. This means that variables will not be visible outside the
module unless 'extern' is added in front of the type definition. Note that option -rx requires that an extern
pointer definition need to be stated before the allocation of the pointer.

extern char *px; // definition only, no allocation of space
char *px; // space is allocated for the pointer

IMPORTANT: 'const' data can not be 'extern' because MPLINK does not support the const access
functions generated by CC5X. Identifiers with the 'const' modifier will not be made visible outside the
module. This also applies to struct objects with const pointers.

IMPORTANT: Allocation of pointers is slightly different when using relocatable assembly. The main
reason for this is that CC5X can not trace how addresses are assigned to pointers between different
modules. There is no change on local and static pointers. An extern visible pointer without a size modifier
(size1/size2) will be:

a) 16 bit if RAM alone use more than 8 bit addresses regardless of the default memory model used.
b) 16 bit if special registers need more than 8 bit addresses when the default RAM memory model is 16

bit (option -mm2 or -mr2).
c) 8 bit otherwise.

An extern visible pointer with the size1 modifier will access addresses from 0 - 255. An error is printed if
the pointer is assigned higher addresses. However, it is possible to force an extern 8 bit pointer to access
addresses 256 - 511 by a pragma statement:

CC5X C Compiler B Knudsen Data

85

extern size1 char *px;
#pragma assume *px in rambank 2 // rambank 2 or 3

Note that 8 bit pointers in a struct can only access addresses from 0 - 255, even if the struct is static or
local.

Local variables
CC5X uses a different naming strategy on local variables when generating relocatable assembly. CC5X
reserves a continuous block in each ram bank (or shared bank) and use this name when accessing local
variables.

IMPORTANT RESTRICTION: The main() routine, interrupt service routines and all extern functions are
defined as independent call trees or paths. A function called from two independent call paths can not
contain local variables or parameters because address sharing can not be computed in advance. CC5X
detects this and generates an error message.

The name of the local RAM blocks are _LcRA, _LcRB, etc. The last letter is related to the RAM bank
and the second last to the module name. Adding option -ro1 will for example change name _LcAA to
_LcBA. This can be used if there is a collision between local variable block defined in separate C
modules. MPLINK detects such collisions.

-ro<N> : add offset <N> when generating local variable block name

Local variables for external available functions are allocated separately. One block for each extern
function. This often means inefficiently use of RAM. It is therefore recommended to use 'extern' only on
those functions that have to be extern, and use few local variables in the extern functions. Also consider
using global variables.

Header files
It is recommended to make common header files that contains global definitions that are included in all C
modules. Such files can contain definitions (#define), IO variable names, etc.

Using RAM banks
RAM bank definitions only applies to devices with RAM located in more than one bank.

Note that the RAM bank of ALL variables have to be known (defined) during compilation. Otherwise the
bank bit updating will not be correct. The bank is defined by using '#pragma rambank' between the
variable definition statements, also for 'extern' variables. An alternative is to use the bank type modifier
(bank0..bank3, shrBank).

#pragma rambank 0
char a,b;
#pragma rambank 1
extern char array1[10];
#pragma rambank -
extern char ex; // shared/common RAM

Bank bit updating
CC5X use an advanced algorithm to update the bank selection bits. However, it is not possible to trace
calls to external functions. Therefore, calling an external function or allowing incoming calls makes
CC5X assume that the bank bits are undefined. This often means that more code compared to the optimal
bank bit update strategy.

CC5X C Compiler B Knudsen Data

86

It is therefore recommended to only use 'extern' on those functions that have to be extern, and keep the
number of calls between modules to a minimum.

Functions
Functions residing in other modules can be called. Functions defined can be called from other modules
(also from assembly modules).

NOTE that ALL functions that are called from another module needs an 'extern' first. This is an extra
requirement that is optional in C. The reason is that the compiler needs to decide the strategy on bank bit
updating and local variables allocation. It is most efficient to use FEW extern functions.

extern void func1(void); // defined in another module

extern void fc2(void) { } // available to all modules

NOTE that extern functions can only have a single unsigned 8 bit parameter which is transferred in W.
This is because local storage information is not shared between modules. The return value can not be
larger than 8 bit for the same reason (bit values are returned in Carry).

Supported extern function parameter types: char, uns8
Supported extern function return types: char, uns8, bit

CC5X inserts a 'GLOBAL <function>' in the generated assembly code for all external available functions.
'EXTERN <function>' is inserted for functions defined in other modules.

If the C module contains main(), then a 'goto main' is inserted in the STARTUP section.

Using code pages
Page bit updating only applies to functions with more than one code page.

The code page of all function calls have to be known (defined) during compilation. Otherwise the page
bit updating will not be correct. The page is defined by using '#pragma location' or the page type modifier
for functions defined in another module. For functions defined in the current module, '#pragma codepage'
can also be used.

It is recommended to define the function heading (prototypes) for all extern functions in a header file
including page information. This file should be included in all C modules.

IMPORTANT: When a module contains functions located on more than one codepage, all function
belonging to the same page must be put in sequence in the source file. This because MPASM/MPLINK
requires all object code sections to be continuous and CC5X is unable to change the definition order of
the functions.

Interrupts
CC5X requires that the interrupt function is located at address 4. Writing the interrupt service routine in C
using MPLINK will require some care. The main issue is to set up the linker script file as described later
in this file. Two options are possible:

ALTERNATIVE 1: Use the linking sequence to locate the interrupt service routine. This is done by
listing the module with the interrupt service routine FIRST in the module list used by MPLINK. This is
the important point which makes MPLINK put the interrupt service routine in the beginning of the
PROG/PROG1 logical code section (address 4). When using MPLAB, the C module containing the
interrupt function must be listed first in the project file list. The list file generated by MPLINK should be
inspected to ensure that the interrupt routine starts at address 4. Another important point is to remove the

CC5X C Compiler B Knudsen Data

87

#pragma origin 4 when using MPLINK. This is the only difference in the C source compared to using the
built in CC5X linker (single C module).

ALTERNATIVE 2: Set up a SEPARATE logical section in the linker script file for the interrupt service
routine. This is a more robust solution. CC5X will generate a partial script file to avoid manual address
calculation. The partial script file must be included in the main script file. The setup is described in
Section The MPLINK script file on page 89.

It is also possible to design an assembly module containing the interrupt service routine. Information on
how to do this should be found in the MPASM/MPLINK documentation.

Call level checking
CC5X will normally check that the call level is not exceeded. This is only partially possible when using
MPLINK. CC5X can ONLY check the current module, NOT the whole linked application.

When calling an external function from the C code, CC5X will assume that the external call is one level
deep. This checking is sometimes enough, especially if all C code is put in one module, and the assembly
code modules are called from well known stack levels. Calling C function from assembly will require
manual analysis.

Therefore, careful verification of the call structure is required to avoid program crash when overwriting a
return value on the hardware stack (which is 2 or 8 levels deep). The compiler generated *.fcs files can
provide information for this checking.

Calls to external functions is written in the *.fcs file. External function calls are marked [EXTERN].

Computed goto
14 bit core: CC5X will always use the long format when generating code for skip(). It is not possible to
use the -GS option. The long format is 3 instructions longer than the short format.

12 bits core: All destination addresses must be located in the first 256 word half of the codepage.
Unfortunately CC5X can not check the layout done by MPLINK. It is therefore strongly recommended to
apply some manual design rules that will prevent destination addresses to be moved into the invisible
(high) code page half. This can be done by ensuring a linking sequence that will put all modules
containing computed goto at the beginning (offset 0) of the codepage. Inspection of the generated list file
is recommended.

Recommendations when using MPLINK
1. Use as few C modules as possible because of:
a) inefficient bank bit updating between modules
b) local variable space can not be reused between modules
c) only a single unsigned 8 bit parameter in calls between modules
d) only 8 or 1 bit return values between modules

2. Use definition header files that are shared between modules. Include the shared definition in all C
modules to enable consistency checking.

a) function headings (prototypes). Add page information when using more than one code page:
// module1.c
extern page0 void sub(char ax);
// module2.c
extern page1 void mpy(void);
// Do not add extern to functions that are not called
// from other modules.

CC5X C Compiler B Knudsen Data

88

char localFunctionA(void); // local function
// Note that it is required to use extern in the
// function definition when an extern prototype
// is not defined.

b) variables: add bank information
// module1.c
extern shrBank char b;
#define ARRAY_SIZE 10
extern bank0 char array[ARRAY_SIZE];
// module3.asm
extern bank1 char mulcnd, mulplr, H_byte, L_byte;

c) constants, definitions, enumerations and type information
#define MyGlobalDef 1
enum { S1 = 10, S2, S3, S4 S5 };
// names assigned to port pins
#pragma bit in @ PORTB.0
#pragma bit out @ PORTB.1

3. define bit variables to overlap with a char variable
/* extern */ char myBits;
bit b1 @ myBits.0;
bit b2 @ myBits.1;
// use 'extern char myBits;' for global bits and
// put the definitions in a shared header file.
// Move definition 'char myBits;' to one of the
// modules.

4. Make a linker script file according to the description stated later. Follow the guidelines when using
interrupts.

5. Set up a 'makefile' to enable automatic (re)compilation and linking. Follow the guidelines when using
MPLAB. Edit and use the option '+reloc.inc' when compiling C modules.

6. Do the final call level checking manually

7. Update conventions in assembly functions called from C modules:
a) The bank selection bits should be updated in the beginning of assembly functions that are called from

C.
b) The page selection bits must be correct (set to the current module page) when returning.

MPLAB and MPASM support
Please refer to ‘linker.txt’ for details on how to set up a project with several modules in MPLAB.

The linker script file must be made (or adapted) according to the description stated.

Note that MPASM will generate its own warnings and messages. These should normally be ignored.
MPASM do not know about the automatic bank bit updating and will display messages about this.
MPASM have generated the message if the asm file extension is used in the message.

Program execution tracing will always use the assembly file as source when using MPLINK. MPASM
can generate object code from assembly modules. There are some restrictions and additions when using
relocatable modules compared to using a single assembly module.

CC5X C Compiler B Knudsen Data

89

CC5X does not support the object code directly, but generates relocatable assembly that MPASM use to
generate the object file. MPASM is started from within the CC5X so that no extra command is required
(only the right command line options).

Case Sensitivity option in MPASM is by default On, and should remain On because C use case dependent
identifiers.

Options to start MPASM and generate relocatable object code:
-x"C:\Program Files\Microchip\MPASM Suite\mpasmwin.exe" -X/o -X/q

Options when assembling and linking a single file:
-x"C:\Program Files\Microchip\MPASM Suite\mpasmwin.exe" -X/q

If the CC5X error file option (-F) is missing, CC5X will read the error file generated by MPASM and
write the error and warnings found there to the screen and the output file (*.occ). The error file is then
deleted.

If the CC5X error file option (-F) is present, CC5X will write error and warnings to the error file (*.err)
and append the error and warnings generated by MPASM at the end of this file.

Note that MPLAB will automatically show the contents of the error file if it is non-empty. Otherwise the
screen output is displayed in 'Build Results' window.

The MPLINK script file
MICROCHIP supplies sample linker script files for each device with the file extension '.lkr' (look in the
MPLAB directory). When making a linker script file for a specific project, this file can be copied and
edited to suit the needs of CC5X.

The sample MPLINK script files must be changed slightly if the interrupt function is written in C. The
reason is that the interrupt function must start at address 4 when using CC5X. It could be possible to use a
vector at address 4, but this slows down interrupt response. Anyway, using a goto vector directly is not
possible when the device contains more than 2048 words of code. This is because PCLATH needs to be
saved before it can be updated.

CHANGE 1: Interrupt routine in C WITH a separate logical section. CC5X generates a partial script file
when using the -r2 (or -r2[=]<file.lkr>) command line option. This file is written if (and only if) CC5X
compiles a module with an interrupt service routine. The generated script file may look like:

CODEPAGE NAME=intserv START=0x4 END=0x1C
CODEPAGE NAME=page0 START=0x1D END=0x7FF

Example change in the main script file:

//CODEPAGE NAME=page0 START=0x4 END=0x7FF
INCLUDE module1.lkr // or other script file name
SECTION NAME=ISERVER ROM=intserv // Interrupt

CHANGE 2: Interrupt routine in C WITHOUT a separate logical section. Example change:

CODEPAGE NAME=vectors START=0x0 END=0x3 PROTECTED
// NEW VALUE: ^------

CODEPAGE NAME=page0 START=0x4 END=0x7FF
// NEW VALUE: ^------

CC5X C Compiler B Knudsen Data

90

CHANGE 3: If INTERRUPTS are not used, then the first code page can start at address 1. Example
change:

CODEPAGE NAME=vectors START=0x0 END=0x0 PROTECTED
// NEW VALUE: ^------

CODEPAGE NAME=page0 START=0x1 END=0x7FF
// NEW VALUE: ^------

CHANGE 4: The 12 bit core devices need a logic section for the startup vector. Example change for the
16C57:

CODEPAGE NAME=page3 START=0x600 END=0x7FE
// NEW VALUE: ^------

CODEPAGE NAME=vectors START=0x7FF END=0x7FF // NEW
SECTION NAME=STARTUP ROM=vectors // NEW

CHANGE 5: Certain devices requires a special interrupt save sequence that needs to use certain RAM
locations (0x20 and 0xA0). These addresses must be made unavailable for allocation in the linker script
file. This applies to 14000, 16C63, 16C63A, 16C65, 16C65A, 16C65B, 16C73, 16C73A, 16C73B,
16C74, 16C74A, 16C74B, 16F873, 16F874 and similar devices. CC5X generates a warning when
variables are assigned to fixed addresses. Example change:

DATABANK NAME=gpr0 START=0x21 END=0x7F
// NEW VALUE: ^------

DATABANK NAME=gpr1 START=0xA1 END=0xFF
// NEW VALUE: ^------

CHANGE 6: LOGICAL RAM sections must be added, one for each DATABANK that contain RAM
locations (not special function registers). Note that if a logical RAM section is missing, then the variables
that belongs to this section will be put in the "default" section. MPLINK gives no error on missing logical
sections in the script file and the program will fail.

SECTION NAME=BANK0 RAM=gpr0 // RAM bank 0
SECTION NAME=BANK1 RAM=gpr1 // RAM bank 1
SECTION NAME=BANK2 RAM=gpr2 // RAM bank 2
SECTION NAME=BANK3 RAM=gpr3 // RAM bank 3
SECTION NAME=SHRAM RAM=gprnobnk // shared RAM
SECTION NAME=GPRAM RAM=gprs // no RAM banks

Logical code blocks:
STARTUP startvector
ISERVER optional section for interrupt routine
PROG for devices with one codepage only
PROG1 first codepage
PROG2
PROG3
PROG4
CONFIG config word
IDLOCS id-locations

Logical RAM blocks:
GPRAM devices without RAM banks
BANK0 bank 0

CC5X C Compiler B Knudsen Data

91

BANK1 bank 1
BANK2 bank 2
BANK3 bank 3
SHRAM shared/common RAM (if available on device)

Command line options:
Page naming:
-rp0 : PROG0 is the name of the first codepage
-rp1 : PROG1 is the name of the first codepage

Bank naming:
-rb0 : BANK0 is the name of the first RAM bank
-rb1 : BANK1 is the name of the first RAM bank

Separate interrupt logical section (named ISERVER):
-r2 : use name of current module (.lkr)
-r2[=]<file.lkr> : use defined file name

Example with 3 modules
This example demonstrates the syntax only.

//***
// MODULE1.C

#include "globdef1.h"
#include "int16CXX.H"

#pragma origin 4

interrupt int_server(void)
{

int_save_registers // W, STATUS (and PCLATH)
if (T0IF) {

/* TMR0 overflow interrupt */
TMR0 = -45;
T0IF = 0; /* reset flag */

}
if (INTF) {

/* INT interrupt */
INTF = 0; /* reset flag */

}
int_restore_registers // W, STATUS (and PCLATH)

}

char a;
bit b1, b2;

void main(void)
{

PORTA = 0b0010;
TRISA = 0b0001;

if (TO == 1 && PD == 1 /* power up */) {
clearRAM(); // set all RAM to 0
a = 5;

CC5X C Compiler B Knudsen Data

92

b1 = 1;
}
mulcnd = 10;
mulplr = 20;
mpy(); // assembly routine (demo)

b2 = !b1;
do {

if (in == 1)
break;

sub(a&3);
} while (a < 200);

}

//**
// MODULE2.C

#include "globdef1.h"

void sub(bank1 char ax)
{

bank1 char i; /* a local variable */

/* generate pulses */
for (i = 0; i <= ax+1; i++) {

out = 1;
nop2();
out = 0;
a ++; // increment global variable

}
}

;**
; GLOBDEF1.H
// names assigned to port pins
#pragma bit in @ PORTA.0
#pragma bit out @ PORTA.1

// module1.c
extern bank0 char a;

// module3.asm
extern bank1 char mulcnd, mulplr, H_byte, L_byte;

// module2.c
extern page0 void sub(char ax);

// module3.asm
extern page0 void mpy(void);

; ***
; MODULE3.ASM

#INCLUDE "P16F877.INC"
BANK1 UDATA

CC5X C Compiler B Knudsen Data

93

mulcnd RES 1 ; 8 bit multiplicand
mulplr RES 1 ; 8 bit multiplier
H_byte RES 1 ; High byte of the 16 bit result
L_byte RES 1 ; Low byte of the 16 bit result
count RES 1 ; loop counter

GLOBAL mulcnd, mulplr, H_byte, L_byte

PROG1 CODE ; page0
mpy

GLOBAL mpy
bsf STATUS, RP0 ; access bank 1
clrf H_byte
movlw 8
movwf count
movf mulcnd, W

loop rrf mulplr, F
btfsc STATUS, C
addwf H_byte, F
rrf H_byte, F
rrf L_byte, F
decfsz count, F
goto loop
retlw 0

END

//**
// File: 16f877.lkr
LIBPATH .

CODEPAGE NAME=vectors START=0x0 END=0x3 PROTECTED
//CODEPAGE NAME=page0 START=0x4 END=0x7FF
INCLUDE module1.lkr
CODEPAGE NAME=page1 START=0x800 END=0xFFF
CODEPAGE NAME=page2 START=0x1000 END=0x17FF
CODEPAGE NAME=page3 START=0x1800 END=0x1FFF
CODEPAGE NAME=.idlocs START=0x2000 END=0x2003 PROTECTED
CODEPAGE NAME=.config START=0x2007 END=0x2007 PROTECTED
CODEPAGE NAME=eedata START=0x2100 END=0x21FF PROTECTED

DATABANK NAME=sfr0 START=0x0 END=0x1F PROTECTED
DATABANK NAME=sfr1 START=0x80 END=0x9F PROTECTED
DATABANK NAME=sfr2 START=0x100 END=0x10F PROTECTED
DATABANK NAME=sfr3 START=0x180 END=0x18F PROTECTED

DATABANK NAME=gpr0 START=0x20 END=0x6F
DATABANK NAME=gpr1 START=0xA0 END=0xEF
DATABANK NAME=gpr2 START=0x110 END=0x16F
DATABANK NAME=gpr3 START=0x190 END=0x1EF

SHAREBANK NAME=gprnobnk START=0x70 END=0x7F
SHAREBANK NAME=gprnobnk START=0xF0 END=0xFF
SHAREBANK NAME=gprnobnk START=0x170 END=0x17F
SHAREBANK NAME=gprnobnk START=0x1F0 END=0x1FF

CC5X C Compiler B Knudsen Data

94

SECTION NAME=STARTUP ROM=vectors // Reset vector
SECTION NAME=ISERVER ROM=intserv // Interrupt routine
SECTION NAME=PROG1 ROM=page0 // ROM code space - page0
SECTION NAME=PROG2 ROM=page1 // ROM code space - page1
SECTION NAME=PROG3 ROM=page2 // ROM code space - page2
SECTION NAME=PROG4 ROM=page3 // ROM code space - page3
SECTION NAME=IDLOCS ROM=.idlocs // ID locations
SECTION NAME=CONFIG ROM=.config // Configuration bits
SECTION NAME=DEEPROM ROM=eedata // Data EEPROM

SECTION NAME=SHRAM RAM=gprnobnk // unbanked locations
SECTION NAME=BANK0 RAM=gpr0 // RAM bank 0
SECTION NAME=BANK1 RAM=gpr1 // RAM bank 1
SECTION NAME=BANK2 RAM=gpr2 // RAM bank 2
SECTION NAME=BANK3 RAM=gpr3 // RAM bank 3

//**
// File: module1.lkr : generated by CC5X when using the -r2 option
// Note that -r2 must be used instead of -r (file 'reloc.inc')

CODEPAGE NAME=intserv START=0x4 END=0x1C
CODEPAGE NAME=page0 START=0x1D END=0x7FF

6.9 The cdata Statement
The cdata statement stores 14 bit data in program memory.

NOTE 1: cdata[] can currently not be used with relocatable assembly. When using MPLINK, such data
statements can be put in an assembly module.

NOTE 2: Constant data should normally be stored using the 'const' type modifier. However, cdata[] is
useful for storing EEPROM data, or data and instructions at fixed addresses.

NOTE 3: There is no check on validity of the inserted data or address. However, it is NOT possible to
overwrite program code and other cdata sections. The data is added at the end of the assembly and hex
file in the same order as it is defined.

NOTE 4: cdata outside legal program and EEPROM space is disabled. The error message can be changed
to a warning by using the -cd command line option. EEPROM address range is 0x2100 - 0x21FF.

SYNTAX:

#pragma cdata[ADDRESS] = <VXS>, .., <VXS>
#pragma cdata[] = <VXS>, .., <VXS>
#pragma cdata.IDENTIFIER = <VXS>, .., <VXS>

ADDRESS: 0 - 0x1FFF, 0x2100 - 0x21FF
VXS : < VALUE | EXPRESSION | STRING>
VALUE: 0 .. 0x3FFF
EXPRESSION: C constant expr. (i.e. 0x1000+(3*1234))
STRING: "Valid C String\r\n\0\x24\x8\xe\xFF\xff\\\""

String translation: \xHH or \xH : hexadecimal number
\0 => 0 \1 => 1 \2 => 2 \3 => 3 \4 => 4
\5 => 5 \6 => 6 \7 => 7 \a => 7 \b => 8

CC5X C Compiler B Knudsen Data

95

\t => 9 \n => 10 \f => 12 \v => 11 \r => 13
\\ => the backslash character itself (0x5C)
\" => '"' (0x22)
\xHH or \xH : hexadecimal number
"\x1Conflict" is better written as "\x1" "Conflict"

Strings are stored as 7 bit ASCII characters (14 bit core devices). The least significant 7 bits of each code
word are filled first. Strings are aligned on word addresses for each <VXS>. However, alignment does
not occur when writing "abc" "def".

IDENTIFIER: any undefined identifier. It is converted to a macro identifier and set to the current cdata
word address. The purpose is to provide an automatic way to find the address of stored items.

Empty cdata statements can be used to set or read the current cdata address.

#pragma cdata[ADDRESS] // set current cdata address
#pragma cdata.IDENTIFIER // "get" current cdata address

Only cdata within the valid code space is counted when calculating the total number of code words.

Using the cdata statement

1. Defining special startup sequences:

#include "hexcodes.h"
#pragma cdata[0] = __NOP
#pragma resetVector 1 // goto main at address 1

2. Restoring calibration values:

#include "hexcodes.h"
#define ResetAddress 0x3FF // 16C509(A)
#pragma cdata[ResetAddress]= __MOVLW(CalValue)

3. Storing packed strings and other data in flash devices (16F87X)

The cdata definitions should be put in a separate file and included in the beginning of the program. This
enables identifiers to be used in the program and checking to be performed.

#define CDATA_START 0x80
#pragma cdata[CDATA_START] // start of cdata block
#pragma cdata[] = 0x3FFF, 0x2000, 0x1000
#pragma cdata[] = 0x100, (10<<4) + 3456,\

10, 456, 10000

#define D7(l,h) l + h*128
#define D28(x) x%0x4000, x/0x4000
#pragma cdata[] = D7(10,20), D28(10234543)

#pragma cdata.ID0 = 0x10, 200+3000
#pragma cdata.ID1 = “Hello world\0"
#pragma cdata.ID2 = “Another string\r\n" “merged”

#pragma cdata.ID_TABLE = ID0, ID1, ID2 // store addresses

CC5X C Compiler B Knudsen Data

96

#pragma cdata.CDATA_END // end of cdata block
..
#pragma origin CDATA_END // program code follow here

void write(uns16 strID);
..

write(ID1);
write(ID2);

All cdata start addresses have to be decided manually. The setup could be as follows:

.. cdata definitions

.. C functions at addresses lower than CDATA_START
// #pragma origin CDATA_START // optional
#pragma origin CDATA_END
.. C functions at addresses higher than CDATA_END

The #pragma origin CDATA_START is not required, because data overlapping is detected automatically.
However, the compiler tells how many instructions are skipped for each origin statement. The cdata
words are not counted at this printout.

Statement #pragma origin CDATA_END allows functions to be stored right after the cdata area. This
origin statement is not required if all cdata are located at the end of the code space.

Preprocessor statements can be used for checking size during compilation:

#if CDATA_END - CDATA_START > 20
#error This is too much

#endif

Storing EEPROM data
EEPROM data can be put into the HEX file at addresses 0x2100 - 0x21FF for transfer to the internal
EEPROM during programming of a device. Note that only the lower 8 bit of the HEX value is used for
each EEPROM location. The compiler does not know how much EEPROM space a device has.

#define EEPROM_START 0x2100
#pragma cdata[EEPROM_START] // start of cdata block
#pragma cdata[] = 0x3F, 10, 'a' // 3 bytes EEPROM data

Note that strings will normally be packed into 2*7 bits when using cdata. This will not work for the
EEPROM area. It is possible to add '\0' in the strings ("a\0b\0c\0"), but it is better to use a pragma to
specify unpacked strings:

#pragma packedCdataStrings 0
// Store following strings unpacked
#pragma cdata[] = "Hello world!\0"

#pragma packedCdataStrings 1
// Store remaining strings packed

LINKER NOTE: EEPROM data must be put in an assembly module when using MPLINK.

CC5X C Compiler B Knudsen Data

97

7 DEBUGGING
Removing compilation errors is a simple task. The real challenge is to reveal the many application bugs.
ALWAYS remember to check the assembly file if the application program does not behave as expected.
Using a compiler does not remove the need for understanding assembly code.

Debugging methods
There are several ways of debugging the program:
1. Test (parts of) the program on a simulator. This allows full control of the input signals and thus exact

repetition of program execution. It is also possible to speed up testing to inspect long term behavior
and check out rare situations. How to do this is application dependent.

2. Use a hardware emulator. An emulator allows inspection and tracing of the internal program state
during execution in the normal application environment, including digital and analog electronics.

3. Insert application specific test-code and run the program on a prototype board. Then gradually
remove the extra code from the verified program parts. The key is to take small steps and restore the
program to a working state before doing the next change. The extra test code can consist of:
1) Code that produces patterns (square waves) on the output pins. This can be checked by an

oscilloscope.
2) Repetition of output sequences.
3) Extra delays or extra code to handle special situations.

The different debugging methods have their advantages and disadvantages. It can be efficient to switch
between several methods.

Compiler bugs
Compiler bugs are hard to detect, because they are not checked out until most other tests have failed.
(Silicon bugs can be even harder). Compiler bugs can often be removed by rewriting the code slightly, or,
depending on the type of bug, try:

1) #pragma optimize
2) #pragma update_FSR
3) #pragma update_RP
4) command line option: -u
5) command line option: -bu
6) command line option: -b

ALWAYS remember to report instances of compiler bugs to B Knudsen Data.

7.1 Compilation Errors
The compiler prints error messages when errors are detected. The error message is proceeded by 2 lines
of source code and a marker line indicating where the compiler has located the error. The printing of
source and marker lines can be switched off by the -e command line option. The maximum number of
errors printed can also be altered. Setting the maximum to 12 lines is done by the command line option -
E12.

The format of the error messages is:
Error <filename> <line number>: <error message>

Some errors are fatal, and cause the compiler to stop immediately. Otherwise the compiling process
continues, but no output files are produced.

If there is a syntax error in a defined macro, then it may be difficult to decide what the problem actually
is. This is improved by printing extra error messages which points to the macro definition, and doing this
recursively when expanding nested macro's.

CC5X C Compiler B Knudsen Data

98

NOTE: When an error is detected, the compiler deletes existing hex and assembly files produced by the
last successful compilation of the same source file.

Error and warning details
The compiler prints a short description of the error message to the output screen and to the *.occ file, but
not to the *.err file. Note that the description will not be visible when enabling the error file in MPLAB.
The *.occ file can then be opened and inspected.

-ed : do not print error details (disable)
-ew : do not print warning details (disable)
-eL : list error and warning details at the end

Some common compilation problems
• not enough variable space
Solution: Some redesign is required. The scope of local variables can be made more narrow. A better
overlapping strategy for global variables can be tried.

• the compiler is unable to generate code
Solution: Some of the C statements have to be rewritten, possibly using simpler statements.

• too much code generated
Solution: rewrite parts of the code. By checking the assembly file it may be possible to detect inefficient
code fragments. Rewriting by using the W register directly may sometimes reduce the code size.
Experience has shown that around 10% of the hex code can be removed by hand-optimizing the C code.
Optimal usage of the code pages and RAM banks is important. Note that the code reduction estimate is
compared to the initial code written.

• codepage limits are exceeded
Solution: move functions to another codepage by using the pragma codepage or location statements. It is
sometimes necessary to split a function into two separate functions.

• too deep call level
Solution: rewrite the code. Remember that the compiler handles most cases where functions are called
once only. If there is a return array at the deepest call level, this code can be moved to the calling
function:

void sel(char i) {
Carry = 0;
W = rl(i); /* multiply by 2 */
skip(W);

#pragma computedGoto 1
W = '0'; goto ENDS;
W = '1'; goto ENDS;
W = '4';

#pragma computedGoto 0
ENDS:
/* processing continues here */

}

7.2 MPLAB Debugging Support
The CC5X compiler can be used inside the MPLAB environment. More details is found in ‘debug.txt’.
The COD file format for debugging purposes is supported. Two modes of source file debugging is
available:

CC5X C Compiler B Knudsen Data

99

a) Using the C source file(s).

b) Using the generated assembly file as the source file. The format of the assembly file in order to suit
the debugging tool. Take a look at the assembly file options. Some suggestions:

-A1+6+10 -AmiJ : simulator I
-A1+6+6 -AmiJs : simulator II
-A6+8+12Jt : compact I
-Am6+8+12Jt : compact II

Enabling the COD-file is done by a command line option:
-CC<filename>: generate debug file using C source file(s). <filename> is optional. The asm file
option is also switched on.
-CA<filename>: generate debug file using generated assembly file as source. <filename> is optional.
The asm file option is also switched on.

Arrays:
Arrays and structures represent a slight challenge, because all variables passed in the COD file are
currently either char or bit types.

This is solved by adding new variables which appears during debugging:

char table[3]; --> table, /* offset 0 */
table_e1, /* offset 1 */
table_e2 /* offset 2 */

struct {
char a;
char b;

} st; --> st, /* offset 0 (element 'a') */
st_e1 /* offset 1 (element 'b') */

This means that the name of a structure element is not visible when inspecting variables in a debugger.

ICD and ICD2 debugging
ICD and ICD2 debugging requires defining a symbol before the header file is compiled to avoid that the
application use reserved resources:

 a) By a command line option:
-DICD_DEBUG or -DICD2_DEBUG

 b) By using #define in combination with #pragma chip or #include:
#define ICD_DEBUG // or ICD2_DEBUG
..
#pragma chip PIC16F877 // or #include "16F877.H"

7.3 Assert Statements
Assert statements allows messages to be passed to the simulator, emulator, etc.

Syntax: #pragma assert [/] <type> <text field>

[/] : optional character

CC5X C Compiler B Knudsen Data

100

<type> : a = user defined assert
e = user defined emulator command
f = user defined printf
l = user defined log command

<text field>: undefined syntax, valid to the end of
the line. The line can be extended by a '\’
character like other preprocessor statements.

#pragma assert /e text passed to the debugger
#pragma assert e text passed to the debugger

#pragma assert ; this assert command is ignored

NOTE 1: comments in the <text field> will not be removed, but passed to the debugger.

NOTE 2: Only ASCII characters are allowed in the assert text field. However, a backslash allows some
translation:
\0 => 0, \1 => 1, \2 => 2, \3 => 3, \4 => 4
\5 => 5, \6 => 6, \7 => 7, \a => 7, \b => 8
\t => 9, \n => 10, \v => 11, \f => 12, \r => 13

USE OF MACRO'S: Macro's can be used inside assert statements with some limitations. The macro
should cover the whole text field AND the <type> identifier (or none of them). Macro's limited to a part
of the text field are not translated. Macro's can be used to switch on and off a group of assert statements
or to define similar assert statements.

#define COMMON_ASSERT a text field
#define AA /
..
#pragma assert COMMON_ASSERT
#pragma assert AA a text field

Macro AA can also disable a group of assert statements if writing:
#define AA ;

#define XX /a /* this will NOT work */
#pragma assert XX causes an error message

7.4 Debugging in Another Environment
Testing a program larger than 500-1000 instructions can be difficult. It is possible to debug parts of the
program in the Windows/MSDOS environment. Another C compiler have to be used for this purpose.
Using another environment has many advantages, like faster debugging, additional test code, use of
printf(), use of powerful debuggers, etc. The disadvantage is that some program rewriting is required.

All low level activity, like IO read and write, have to be handled different. Conditional compilation is
recommended. This also allows additional test code to be easily included.

#ifdef SIM
// simulated sequence
// or test code (printf statements, etc.)

#else
// low-level PICmicro code

#endif

CC5X C Compiler B Knudsen Data

101

The following can be compiled and debugged without modifications:

1. General purpose RAM access
2. Bit operations (overlapping variables requires care)
3. Use of FSR and INDF (with some precautions)
4. Use of rl(), rr(), swap(), nop() and nop2(). Carry can be used together with rl() and rr(). Direct use of

Zero_ should be avoided.
5. Use of the W register

The recommended sequence is to:
1. Write the program for the actual PICmicro device.
2. Continue working until it can be compiled successfully.
3. Debug low-level modules separately by writing small test programs (i.e. for keyboard handling,

displays, IIC-bus IO, RT-clocks).
4. Add the necessary SIM code and definitions to the code. Debug (parts of) the program in another

environment. Writing alternative code for the low-level modules is possible.
5. Return to the PICmicro environment and compile with SIM switched off and continue debugging

using the actual chip.

File ‘debug.txt’ contains definitions that are useful when running a PICmicro application program in
another environment using a standard C compiler.

CC5X C Compiler B Knudsen Data

102

8 FILES PRODUCED
The compiler produces a compiler output file and a hex file that may be used for programming the
PICmicro chips directly. The hex file is produced only there are no errors during compilation. The
compiler may also produce other files by setting some command line options.

8.1 Hex File
The default hex file format is INHX8M. The format is changed by the -f command line option. The
INHX8M, INHX8S and INHX32 formats are:
:BBaaaaTT112233...CC
BB - number of data words of 8 bits, max 16
aaaa - hexadecimal address (byte-address)
TT - type :

00 : normal objects
01 : end-of-file (:00000001FF)

11 - 8 bits data word
CC - checksum - the sum of all bytes is zero.

The 16 bit format used by INHX16 is defined by:
:BBaaaaTT111122223333...CC
BB - number of data words of 16 bits, max 8
aaaa - hexadecimal address (of 16 bit words)
TT - type :

00 : normal objects
01 : end-of-file (:00000001FF)

1111 - 16 bits data word
CC - checksum - the sum of all bytes is zero.

The records in the HEX file are sorted according to the address. Option -chu will disable this sorting for
backward compatibility with older compiler versions (version 3.2R and earlier).

8.2 Assembly Output File
The compiler produces a complete assembly file. This file can be used as input to an assembler. Text
from the source file is merged into the assembly file. This improves readability. Variable names are used
throughout. A hex format directive is put into the assembly file. This can be switched off if needed. Local
variables may have the same name. The compiler will add an extension to ensure that all variable names
are unique.

The compiler will use __config and __idlocs in the generated assembly file when #pragma config is used
in the source. The old assembly format is still available by using the command line option -cfc.

Command line option -Ma will truncate all automatic generated labels in the assembly and list files. This
option is sometimes useful when comparing assembly files generated by different compiler versions.

There are many command line options which change the assembly file produced. Please note the
difference between the -a and the -A options. The -a option is needed to produce an assembly file, while
the -A option changes the contents of the assembly and list files.

The general format is -A[scHDpftmiJRbeokgN+N+N].
s: symbolic arguments are replaced by numbers
c: no C source code is printed
H: hexadecimal numbers only
D: decimal numbers only
p: no '.' in front of decimal constants

CC5X C Compiler B Knudsen Data

103

f: no object format directive is printed
t: no tabulators, normal spaces only
m: single source line only
i: no source indentation, straight left margin
J: put source after instructions to achieve a compact assembly file.
R: detailed macro expansion
b: do not add rambank info to variables in the assembly file
e: do not add ',1' to instructions when result is written back to the register
o: do not replace OPTION with OPTION_REG
k: do not convert all hexadecimal numbers (11h -> 0x11)
g: do not use PROCESSOR instead of the list directive
N+N+N: label, mnemonic and argument spacing. Default is 8+6+10.

Note that the options are CASE sensitive.

Some examples:
Default : ; x++;

m001 INCF x
-AsDJ : m001 INCF 10 ; x++;
-Ac : m001 INCF x
-AJ6+8+11 : m001 INCF x ; x++;
-AiJ1+6+10 : m001

INCF x ;x++;
-AiJs1+6+6 : m001

INCF 0Ah ;x++;

8.3 Variable File
The variable list file contains information on the variables declared. Variables are sorted by address by
default, but this can be changed. The compiler needs the command line option -V to produce this file. The
file name is <src>.var.

The general format is -V[rnuD]. The additional letters allows the file contents to be adjusted:

r: only variables which are referenced in the code
n: sort variables by name
u: keep the variables unsorted
D: use decimal numbers

Variable file contents:
X B Address Size #AC Name

X -> L : local variable
G : global variable
P : assigned to certain address
E : extern variable
R : overlapping, directly assigned
C : const variable

B -> - : mapped RAM (available in all banks)
0 : bank 0
1 : bank 1
.. etc.

Address -> 0x00A : file address
0x00C.0 : bit address (file + bit number)

CC5X C Compiler B Knudsen Data

104

Size -> size in bytes (0 for bit)
#AC -> 12: number of direct accesses to the variable

Examples:
X B Address Size #AC Name
P [-] 0x000 1 : 0: INDF
R [-] 0x006.0 0 : 1: in
R [-] 0x00B 1 : 10: alfa
P [-] 0x00B 1 : 12: fixc
L [-] 0x00D 1 : 1: lok
L [0] 0x012.0 0 : 6: b1
G [0] 0x012.1 0 : 16: bx
G [0] 0x015 1 : 23: b

When a function is not called (unused), all its parameters and local variables are truncated to the same
location. Example:
L [-] 0x00F 1 : 16<> pm_2_

8.4 List File
The compiler can also produce a list file. The command line option is –L or -L[<col>,<lin>]. The
maximum number of columns per line <col> and lines per page <lin> can be altered. The default setting
is -L200,60. The contents of the list file can be changed by using the -A option.

8.5 Function Call Structure
The function call structure can be written to file <src>.fcs. This is useful for codepage optimization and
function restructuring in case of call level problems. Note that two different formats are produced; the
first is a list of functions, the second is a recursive expansion of the function call structure. The command
line option is -Q for both formats.

Format sample:
F: function1 :#1 : p0 <- p1

func2 : #5 : p0 -> p3 **
delay : #2 : p0 -> p2 *
func3 : #3 : p0 -> p0

The meaning of the symbols is:
1. func2, delay and func3 are called from function1
2. #1 : function1 is called once
3. #3 : func3 is called 3 times (once from function1)
4. p0 <- p1 : function1 resides on page 0
5. p0 <- p1 : function1 is called from page 1
6. p0 -> p3 : call to func2 (resides on page 3)
7. * : one pagebit have to be updated before call
8. ** : both pagebits have to be updated

The call structure is expanded recursively. The indentation show the nesting of the function calls in the
source. The true call level is printed at the beginning of the line. The true call level is different from the
indentation level when CALL's have been replaced by GOTO's. A mark is then printed at the end of the
line in such cases. The interrupt call level is handled automatically and checked. There is a separate
expansion for the interrupt service routine.
L0 main
L1 function1
L2 func2
L2 delay

CC5X C Compiler B Knudsen Data

105

L2 func3
L1 function1 ..

Explanation of symbols used:
• L1 : stack level 1 (max 2 or 8 levels). This is the REAL stack level, compensated when CALL's have

been replaced by GOTO.
• .. : only the first call is fully expanded if more that one call to the same function occur inside the

same function body.
• [CALL->GOTO] : CALL replaced by GOTO in order to get more call levels
• [T-GOTO] : CALL+RETURN is replaced by GOTO to save a call level.
• [RECURSIVE] : recursive function call

8.6 Preprocessor Output File
The compiler will write the output from the preprocessor to a file (<src>.cpr) when using the -B
command line option. Preprocessor directives are either removed or simplified. Macro identifiers are
replaced by the macro contents. This file can be useful to check out macro expansion, for example when
the compiler produce an error message when nested macro’s are used.

The option format is -B[pims] where the additional letters allow some alternatives:

p : partial preprocessing
i : no include files
m: modify symbols
s : modify strings

Compilation will stop after preprocessing when using any of the additional letters.

CC5X C Compiler B Knudsen Data

106

9 APPLICATION NOTES

9.1 Delays
Delays are frequently used. There are various methods of generating them:

1. Instruction cycle counting
2. Use of the TMR0 timer
3. Watchdog timeout for low power consumption
4. Use of variables achieves longer intervals

void delay(char millisec)
/* delays a multiple of 1 millisecond at 4 MHz */
{

OPTION = 2; /* prescaler divide by 8 */
do {

TMR0 = 0;
clrwdt(); /* only if necessary */
while (TMR0 < 125) /* 125 * 8 = 1000 */

;
} while (-- millisec > 0);

}

void delay10(char n)
/*Delays a multiple of 10 millisec.

Clock : 4 MHz => period T = 0.25 microsec.
DEFINITION: 1 is = 1 instruction cycle
error: 0.16 percent

*/
{

char i;
OPTION = 7;
do {

clrwdt(); /* only if necessary */
i = TMR0 + 39; /* 256 us * 39 = 10 ms */
while (i != TMR0)

;
} while (--n > 0);

}

void _delay10(char x)
/*

Delays a multiple of 10 millisec.
Clock : 32768 Hz => period T = 30.518 microsec.
DEFINITION: 1 is = 1 instruction cycle

= 4 * T = 122 microsec
10 ms = 82 is (81.92) => error: 0.1 percent

*/
{

char i;
do {

i = 26; /* 2 is */
do

i = i - 1;
while (i > 0); /* 26 * 3 - 1 = 77 is */

CC5X C Compiler B Knudsen Data

107

} while (--x > 0); /* 3 is */
}

char counter;

void main(void)
{

if (TO == 1) {
/* power up or MCLR */
PORTA = 0; /* write output latch first */
TRISA = 0; /* all outputs */
TRISB = 0xFF; /* all inputs */

}
else {

/* watchdog wakeup */
counter -= 1;
if (counter > 0) {

OPTION = 0x0B; /* WDT divide by 16 */
sleep(); /* waiting 16 * 18 ms =

288 ms = 0.288 seconds */
}

}
delay(100); /* 100 millisec */
/* .. */
delay10(100); /* 1 second */
/* .. */
counter = 7; /* 7*0.288ms = 2000 ms */
OPTION = 0x0B; /* 0 1011 : WDT divide by 16 */
/* sleep(); waiting 16*18 ms = 0.288 seconds */

} /* total of 2 seconds, low power consumption */

9.2 Computed Goto
Computed goto is a compact and elegant way of implementing a multiselection. It can also be used for
storing a table of constants. However, the ‘const’ type modifier is normally the best way to store constant
data in program memory.

WARNING: Designing computed goto's of types not described in this section may fail. The generated
assembly file will then have to be studied carefully because optimization and updating of the bank
selection bits can be wrong.

The 12 bit core requires that all destinations of the computed goto are within the first half code page. The
14 bit core requires that PCLATH is correctly updated before loading PCL. The compiler can do ALL
updating and checking automatically. Study the following code samples.

char sub0(char i)
{

skip(i); // jumps 'i' instructions forward
#pragma return[] = "Hello world"
#pragma return[] = 10 "more text" 0 1 2 3 0xFF

/* This is a safe and position-independent method
of coding return arrays or lookup constant
tables. It works for all PICmicro devices. The
compiler handles all checking and code
generation issues. It is possible to use return
arrays like above or any C statements. */

CC5X C Compiler B Knudsen Data

108

return 110;
return 0x2F;

}

char sub01(char W)
{

skip(W); // using W saves one instruction
#pragma return[] = "Simple, isn't it" 0
/* skip(W) is allowed on the 12 bit core and for
the first 256 addresses of the 14 bit core */

}

Built in skip() function for computed goto
The skip() function also allow a 16 bit parameter. When using an 8 bit parameter, carry is automatically
generated (3 code words extra) if the table cross a 256 word address boundary. Carry is always inserted
when generating relocatable assembly. Options available:

 -GW : dynamic selected skip() format, warning on long format (default)
 -GD : dynamic selected skip() format
 -GS : always short skip() format (error if boundary is crossed)
 -GL : always long skip() format

When using the -GS option, CC5X will generate an error if the table cross a 256 word code address
boundary. The short format enables most compact code, but requires manually moving the table in the
source code if the error is produced.

Origin alignment
It is possible to use #pragma origin to ensure that a computed goto inside a function does not cross a 256
word address boundary. However, this may require many changes during program development. An
alternative is to use #pragma alignLsbOrigin to automatically align the least significant byte of the origin
address. Note that this alignment is not possible when using relocatable assembly, and also that it does
not apply to the 12 bit core.

Example: A function contain a computed goto. After inspecting the generated list file, there are 16
instructions between the function start and the first destination address (offset 0) right after the ADDWF
PCL,0 instruction that perform the computed goto. The last destination address (offset 10) resides 10
instructions after the first destination. A fast a compact computed goto requires that the first and last
destination resides on the same “byte page” (i.e. (address & 0xFF00) are identical for the two addresses).
This is achieved with the statement:

#pragma alignLsbOrigin -16 to 255 – 10 – 16

The alignment pragma statement is not critical. The compiler will generate an error (option -GS) or a
warning (-GW) if the computed goto cross a boundary because of a wrong alignment. An easier approach
is to align the LSB to a certain value (as long as program size is not critical).

#pragma alignLsbOrigin 0 // align on LSB = 0
#pragma alignLsbOrigin 0 to 190 // [-255 .. 255]
#pragma alignLsbOrigin -100 to 10

Computed goto regions
The compiler enters a goto region when skip() is detected. In this region optimization is slightly changed,
and some address checks are made. The goto region normally ends where the function ends.

CC5X C Compiler B Knudsen Data

109

A goto region can also be started by a pragma statement:
#pragma computedGoto 1 // start c-goto region
// useful if PCL is written directly

A goto region can also be stopped by a pragma statement:
#pragma computedGoto 0 // end of c-goto region
/* recommended if the function contains code

below the goto region, for instance when the
table consists of an array of goto
statements (examples follow later). */

Computed Goto Regions affects:
1. Optimization
2. Register bank bit updating (RP0/1, FSR5/6)
3. 256 word page checks

Examples

char sub01(char W)
{
/* The computed goto region can be constructed

just as in assembly language. However, '#pragma
computedGoto' should be inserted around such a
region. Otherwise unexpected results may
occur. */

#pragma computedGoto 1
PCLATH = 0; // 14 bit core only
PCL += W;

/* 14 bit core: REMEMBER to make sure that the
function is located within the first 256
addresses. (There is no warning on this when
'skip(W)' is NOT used) */

return 'H';
return 'e';
return 'l';
return 'l';
return 'o';

#pragma computedGoto 0
}

/* A VERY LARGE TABLE (with more than 256 byte)
can also be constructed (14 bit core): */

char L_dst, H_dst;

char sub02(void)
{

/* H_dst,L_dst : index to the desired element,
starting from 0 */

#define CGSTART 0x100
PCLATH = CGSTART/256 + H_dst; // MSB offset
PCL = L_dst; // GLOBAL JUMP AT THIS POINT
return W; // dummy return, never executed

/* IMPORTANT : THIS FUNCTION AND THE DESTINATION
ADDRESSES HAVE TO BE LOCATED IN THE SAME 2048

CC5X C Compiler B Knudsen Data

110

WORD CODEPAGE. OTHERWISE PCLATH WILL NOT BE
CORRECT ON RETURN */

}

#pragma origin CGSTART // the starting point
/* The origin statement is the best way to

set the starting point of the large return
table. The address should be defined by a
'#define' statement, because it then can
be safely changed without multiple updating. */

char sub02r(void)
{

#pragma computedGoto 2 // start of large table
#pragma return[] = "ALFA"
#pragma return[] = 0x10 0x11
..

}
#pragma origin 0x0320

/* using an origin statement after a large return
table is useful to check the number of return
instructions generated. In this case, there
should be 0x320-0x100=0x250=544 instructions.
If not, any differences will be reported by
the compiler, either as an error, or as a
message. */

void sub3(char s)
{

/* the next statements could also be written as
a switch statement, but this solution is
fastest and most compact. */

if (s >= 3)
goto Default;

skip(s);
goto Case0;
goto Case1;
goto LastCase;

#pragma computedGoto 0 // end of c-goto region

Case0:
/* user statements */
return;

Case1:
LastCase:

/* user statements */
return;

Default:
/* user statements */
return;

}

void sub4(char s)
{

/* this solution can be used if very fast execution is important
and a fixed number of instructions (2/4/8/..) is executed at

CC5X C Compiler B Knudsen Data

111

each selection. Please note that extra statements have to be
inserted to fill up empty space between each case. */

if (s >= 10)
goto END;

Carry = 0;
s = rl(s); /* multiply by 2 */
s = rl(s); /* multiply by 2 */
skip(s);

// execute 4 instructions at each selection
Case0: nop(); nop(); nop(); return;
Case1: nop(); nop(); nop(); return;
Case2: nop(); nop(); nop(); return;
Case3: nop(); nop(); nop(); return;
Case4: nop(); nop(); nop(); return;
Case5: nop(); nop(); nop(); goto END;
Case6: nop(); nop(); nop(); goto END;
Case7: nop(); nop(); nop(); goto END;
Case8: nop(); nop(); nop(); goto END;
Case9: nop(); nop(); nop(); goto END;
#pragma computedGoto 0 /* end of region */
END:

/*
NOTE: "goto END" is necessary for ALL cases if the function is
called from another codepage. NOTE: '#pragma optimize ..' can
be useful in this situation. If the call level is too deep, note
that the compiler can only replace CALL by GOTO if there are few
'return constant' inside the function.

*/
}

9.3 The switch statement

char select(char W)
{

switch(W) {
case 1: /* XORLW 1 */

/* .. */
break;

case 2: /* XORLW 3 */
break;

case 3: /* XORLW 1 */
case 4: /* XORLW 7 */

return 4;
case 5: /* XORLW 1 */

return 5;
}
return 0; /* default */

}

The compiler performs a sequence of XORLW <const>. These constants are NOT the same as the
constants written in the C code. However, the produced code is correct! If more compact code is required,
then consider rewriting the switch statement as a computed goto. This is very efficient if the cases are
close to each other (i.e. 2, 3, 4, 5, ..).

CC5X - APPENDIX B Knudsen Data

112

APPENDIX

A1 Using Interrupts

#pragma bit pin1 @ PORTA.1
#pragma bit pin2 @ PORTA.2

#include "int16CXX.H"

#pragma origin 4

interrupt int_server(void)
{

int_save_registers // W, STATUS (and PCLATH)

if (T0IF) {
/* TMR0 overflow interrupt */
TMR0 = -45;
if (pin1 == 1)

pin1 = 0;
else

pin1 = 1;
T0IF = 0; /* reset flag */

}

if (INTF) {
/* INT interrupt */
INTF = 0; /* reset flag */

}

if (RBIF) {
/* RB port change interrupt */
W = PORTB; /* clear mismatch */
RBIF = 0; /* reset flag */

}

/*
NOTE: GIE is AUTOMATICALLY cleared on interrupt entry and set

to 1 on exit (by RETFIE). Setting GIE to 1 inside the
interrupt service routine will cause nested interrupts
if an interrupt is pending. Too deep nesting may crash
the program !

*/

int_restore_registers // W, STATUS (and PCLATH)
}

void main(void)
{

#ifdef _16C71
ADCON1 = bin(11); /* port A = digital */

#endif
#if defined _16F873 || defined _16F874 || defined _16F876 || \

defined _16F877

CC5X - APPENDIX B Knudsen Data

113

ADCON1 = 0b0110; // PORT A is digital
#endif

PORTA = 0; /* 76543210 */
TRISA = 0b11111001;

OPTION = 0; /* prescaler divide by 2 */
TMR0 = -45; /* 45 * 2 = 90 periods */
T0IE = 1; /* enable TMR0 interrupt */
GIE = 1; /* interrupts allowed */

while (1) { /* infinite loop */
pin2 = 0;
nop2(); // 2 Instruction cycles
nop(); // 1 Instruction cycle
pin2 = 1;

}
}

A2 Predefined Register Names

Core 12:
char W;
char INDF, TMR0, PCL, STATUS, FSR, PORTA, PORTB;
char INDF0, RTCC, PC; // alternative names
char OPTION, TRISA, TRISB;
char PORTC, TRISC;
bit Carry, DC, Zero_, PD, TO, PA0, PA1, PA2;
bit FSR_5, FSR_6;

Core 14:
char W;
char INDF, TMR0, PCL, STATUS, FSR, PORTA, PORTB;
char INDF0, RTCC, PC, OPTION; // alternative names
char OPTION_REG, TRISA, TRISB;
char PCLATH, INTCON;
bit PS0, PS1, PS2, PSA, T0SE, T0CS, INTEDG, RBPU_;
bit RTE, RTS; // alternative names
bit Carry, DC, Zero_, PD, TO, RP0, RP1, IRP;
bit RBIF, INTF, T0IF, RBIE, INTE, T0IE, GIE;
bit RTIF, RTIE; // alternative names
bit PA0, PA1; // PCLATH

A3 Assembly Instructions
Assembly: Status: Function:
NOP - - No operation
MOVWF f - f = W; Move W to f
CLRW - Z W = 0; Clear W
CLRF f Z f = 0; Clear f
SUBWF f,d C,DC,Z d = f - W; Subtract W from f
DECF f,d Z d = f - 1; Decrement f
IORWF f,d Z d = f | W; Inclusive OR W and f
ANDWF f,d Z d = f & W; AND W and f
XORWF f,d Z d = f ^ W; Exclusive OR W and f
ADDWF f,d C,DC,Z d = f + W; Add W and f

CC5X - APPENDIX B Knudsen Data

114

MOVF f,d Z d = f; Move f
COMF f,d Z d = f ^ 255; Complement f
INCF f,d Z d = f + 1; Increment f
DECFSZ f,d - Decrement f, skip if zero
RRF f,d C Rotate right f through carry bit
RLF f,d C Rotate left f through carry bit
SWAPF f,d - Swap halves f
INCFSZ f,d - Increment f, skip if zero

BCF f,b - f.b = 0; Bit clear f
BSF f,b - f.b = 1; Bit set f
BTFSC f,b - Bit test f, skip if clear
BTFSS f,b - Bit test f, skip if set

OPTION - - OPTION = W; Load OPTION register
SLEEP - TO,PD Go into standby mode, WDT = 0
CLRWDT - TO,PD WDT = 0; Clear watchdog timer
TRIS f - Tristate port f (f5,f6,f7)
RETLW k - Return, put literal in W
CALL k - Call subroutine
GOTO k - Go to address
MOVLW k - W = k; Move literal to W
IORLW k Z W = W | k; Incl. OR literal and W
ANDLW k Z W = W & k; AND literal and W
XORLW k Z W = W ^ k; Excl. OR literal and W

Addition for the 14 bit core
ADDLW k C,DC,Z W = k + W; Add literal to W
SUBLW k C,DC,Z W = k - W; Subtract W from literal
RETURN - - Return from subroutine
RETFIE - - Return from interrupt

Note:
d = 1 : destination f: DECF f : f = f - 1
d = 0 : destination W: DECF f,W : W = f - 1
f : file register 0 – 31, 0 - 127
Z : Zero bit : Z = 1 if result is 0
C : Carry bit :

ADDWF : C = 1 indicates overflow
SUBWF : C = 0 indicates overflow
RRF : C = bit 0 of file register f
RLF : C = bit 7 of file register f

DC : Digit Carry bit :
ADDWF : DC = 1 indicates digit overflow
SUBWF : DC = 0 indicates digit overflow

TO : Timeout bit
PD : Power down bit

Instruction execution time
Most instructions execute in 4 clock cycles. The exceptions are instructions that modify the program
counter. These execute in 8 clock cycles:
• GOTO and CALL
• skip instructions when next instruction is skipped
• instructions that modify the program counter, i.e: ADDWF PCL

	1 INTRODUCTION
	
	
	CC5X features

	1.1 Supported devices
	1.2 Installation and System Requirements
	Support for long file names
	User interface

	1.3 MPLAB Support
	1.4 Summary of Delivered Files
	1.5 Short Program Example
	1.6 Defining the PICmicro Device
	1.7 What to do next

	2 VARIABLES
	2.1 Information on RAM allocation
	
	Priority when allocating variables:

	2.2 Defining Variables
	Integer variables
	Floating point
	Floating point exception flags

	IEEE754 interoperability
	Fixed point variables
	Fixed point constants
	Type conversion
	Fixed point interoperability

	Assigning variables to RAM addresses
	Supported type modifiers
	Local variables
	Using several stacks

	Temporary variables
	Arrays, structures and unions
	Bitfields
	Typedef

	2.3 Using RAM Banks
	The bank type modifier
	RAM bank selection bits
	Local user update regions

	2.4 Pointers
	Pointer models
	The 12 bit Core
	The 14 bit core: the IRP bit

	2.5 Const Data Support
	
	Recommendations:
	Limitations:

	Storing 14 bit data
	Data of size 16 bit or more
	Code pages
	Merging data
	Examples

	3 SYNTAX
	3.1 Statements
	if statement
	while statement
	for statement
	do statement
	switch statement
	break statement
	continue statement
	return statement
	goto statement

	3.2 Assignment and Conditions
	Special syntax examples
	Conditions
	Bit variables
	Multiplication, division and modulo
	Precedence of C operators
	Mixed variable sizes are allowed

	3.3 Constants
	Constant expressions
	Enumeration

	3.4 Functions
	Function return values
	Parameters in function calls
	Internal functions

	3.5 Type Cast
	3.6 Accessing Parts of a Variable
	3.7 C Extensions
	3.8 Predefined Symbols
	
	Extensions to the standard C keywords:
	Standard C keywords used:

	Automatically defined macros and symbols
	Macro's __DATE__ and __TIME__

	3.9 Upward Compatibility

	4 PREPROCESSOR DIRECTIVES
	
	#define
	Macro concatenation
	Macro stringification
	#include
	#undef
	#if
	#ifdef
	#ifndef
	#elif
	#else
	#endif
	#error
	#warning
	#message
	#pragma alignLsbOrigin <a> [to]
	#pragma asm2var 1
	#pragma assert [/] <type> <text field>
	#pragma assume *<pointer> in rambank <n>
	#pragma bit <name> @ <N.B or variable[.B]>
	#pragma cdata[ADDRESS] = <VXS>, .., <VXS>
	#pragma char <name> @ <constant or variable>
	#pragma chip [=] <device>
	#pragma codepage [=] <0,1,2,3>
	#pragma computedGoto [=] <0,1,2>
	#pragma config [<id>] = <state> [, <id> = <state>]
	#pragma config_def [=] <value>
	#pragma config_reg2 [=] <address>
	#pragma inlineMath <0,1>
	#pragma interruptSaveCheck <n,w,e>
	#pragma library <0/1>
	#pragma location [=] <0,1,2,3,->
	#pragma mainStack <minVarSize> @ <lowestStartAddr>
	#pragma minorStack <maxVarSize> @ <lowestStartAddr>
	#pragma optimize [=] [N:] <0,1>
	#pragma origin [=] <expression>
	#pragma packedCdataStrings <0,1>
	#pragma rambank [=] <0,1,2,3,->
	#pragma rambase [=] <n>
	#pragma ramdef <ra> : <rb> [MAPPING]
	#pragma resetVector <n>
	#pragma return[<n>] = <strings or constants>
	#pragma sharedAllocation
	#pragma stackLevels <n>
	#pragma unlockISR
	#pragma updateBank [entry | exit | default] [=] <0,1>
	#pragma update_FSR [=] <0,1>
	#pragma update_IRP [=] <0,1>
	#pragma update_PAGE [=] <0,1>
	#pragma update_RP [=] <0,1>
	#pragma versionFile [<file>]
	#pragma wideConstData [<N> | p | r]

	4.2 PICmicro Configuration
	
	Syntax:

	5 COMMAND LINE OPTIONS
	5.1 Options in a file
	5.2 Automatic incrementing version number in a file
	5.3 Environment Variables

	6 PROGRAM CODE
	6.1 Program Code Pages
	Another way of locating functions
	Notes:

	The page type modifier
	Page selection bits

	6.2 Subroutine Call Level Checking
	Stack level checking when using interrupt
	Recursive functions

	6.3 Interrupts
	6.4 Startup and Termination Code
	Clearing ALL RAM locations

	6.5 Library Support
	Math libraries
	Integer libraries
	Fixed point libraries
	Floating point libraries
	Floating point library functions
	Fast and compact inline operations
	Using prototypes and multiple code pages
	Fixed point example
	Floating point example
	How to save code

	6.6 Inline Assembly
	Direct coded instructions
	Generating single instructions using C statements

	6.7 Optimizing the Code
	Optimized syntax
	Peephole optimization

	6.8 Linker Support
	Using MPLINK or a single module
	Variables and pointers
	Local variables
	Header files
	Using RAM banks
	Bank bit updating
	Functions
	Using code pages
	Interrupts
	Call level checking
	Computed goto
	Recommendations when using MPLINK
	MPLAB and MPASM support
	The MPLINK script file
	Example with 3 modules

	6.9 The cdata Statement
	Using the cdata statement
	Storing EEPROM data

	7 DEBUGGING
	
	
	Debugging methods
	Compiler bugs

	7.1 Compilation Errors
	Error and warning details
	Some common compilation problems

	7.2 MPLAB Debugging Support
	
	Enabling the COD-file is done by a command line option:
	Arrays:

	ICD and ICD2 debugging

	7.3 Assert Statements
	7.4 Debugging in Another Environment

	8 FILES PRODUCED
	8.1 Hex File
	8.2 Assembly Output File
	8.3 Variable File
	8.4 List File
	8.5 Function Call Structure
	8.6 Preprocessor Output File

	9 APPLICATION NOTES
	9.1 Delays
	9.2 Computed Goto
	Built in skip() function for computed goto
	Origin alignment
	Computed goto regions
	Examples

	9.3 The switch statement

	APPENDIX
	A1 Using Interrupts
	A2 Predefined Register Names
	
	Core 12:
	Core 14:

	A3 Assembly Instructions
	Addition for the 14 bit core
	Instruction execution time

