CC8E

C Compiler for the
PIC18 Devices

Version 1.8

User's Manual

&

B Knudsen Data
Trondheim - Norway

CCB8E C Compiler B Knudsen Data

This manual and the CC8E compiler is protected by Norwegian copyright laws and thus by corresponding
copyright laws agreed to internationally by mutual consent. The manual and the compiler may not be
copied, partially or as a whole without written consent from the author. The PDF-edition of the manual
can be printed to paper for private or local use, but not for distribution. Modification of the manual or the
compiler is strongly prohibited. All rights reserved.

LICENSE AGREEMENT:
By using the CC8E compiler, you agree to be bound by this agreement.

Only one person may use a licensed edition of the CC8E compiler at the same time for each user license.
If more than one person wants to use the compiler for each user license, then this has to be done by some
manual handshaking procedure (not electronic automated), for example by exchanging a printed copy of
the CCB8E User's Manual as a permission key. A site license allows an unlimited number of users within

the same administration unit.

You may make backup copies of the software, and copy it to multiple computers. You may not distribute
copies of the compiler to others. B Knudsen Data assumes no responsibility for errors or defects in the
documentation or in the compiler. This also applies to problems caused by such errors.

Copyright © B Knudsen Data, Trondheim, Norway, 2001 - 2021

This manual covers CC8E version 1.8 and related topics. New versions may contain changes without
prior notice.

Microchip and PICmicro are trademarks of Microchip Technology Inc., Chandler, AZ, U.S.A.

COMPILER BUG REPORTS:

The compiler has been carefully tested and debugged. It is, however, not possible to guarantee a 100 %
error free product.

If the compiler generates application code bugs, it is almost always possible to rewrite the program
slightly in order to avoid the bug. #pragma optimize can be used to avoid optimization bugs. Other
#pragma statements are also useful.

Please report cases of bad generated code and other serious program errors.

1) Investigate and describe the problem. If possible, please provide a complete C example program that
demonstrates the problem. A fragment from the generated assembly file is sometimes enough.

2) This service is intended for difficult compiler problems (not application problems).

3) Language: English

4) State the compiler version.

5) Send your report to support@bknd.com.

Document version: |

mailto:support@bknd.com

CCB8E C Compiler B Knudsen Data

CONTENTS
1 INTRODUGCTION ...ttt ettt ettt ettt et te e sb e e ete s aee s be e sbeeebeebeeabeetbesbeesbeesbeesbesseesnsesnsesneeareeans 7
1.1 SUPPORTED DEVICESiiutiitteiteeiteettesttesteesteestesssessesssesssessseassessesssessssstssstesssesssesnsesssessssssssssesssesseessenss 7
1.2 INSTALLATION AND SYSTEM REQUIREMENTS ...cciiiiiuttiiiieeiisiittiii e e s s s s sibbasesesssssabbsssssssssssbbasasesssssnnns 8
SUPPOIt fOr 10N FIlE NAMES ... bbb sae bbb 8
L0 LT 101 (=] =T YRR PRRTRPI 8
1.3 IMIPLAB SUPPORTciiiittiee e ettt ettt e e e ettt e e ettt e e et e e e e e tb e e e e e atee e e sbtee e s ahbeeeeaabaeeesabeeesssbeeesantbeeesseeeessabeeans 8
1.4 THE SETCC UTILITY ittt ettt ettt e e ettt e e e ettt e e e et e e e e at e e e s stbe e e e aatae e e eateeessbbeeeeantbeeesnrneessabeeans 9
1.5 SUMMARY OF DELIVERED FILESceciittiiiiiitiieeeitiee e s ettt e e ettt e e eette e e s stte e e e satae e e sareaesssbaeeeantaeeesnnneessnreeens 9
1.6 SHORT PROGRAM EXAMPLEcuciitiitiiiteeiteeiteeiteatestteeteesbeesteesaessaesteesteeabeeseenbesssestsesteesteesbesssesnnesnns 10
1.7 DEFINING THE PICMICRO DEVICEciiiiitiiite ettt ette et ste e ete ettt sbe e steesbeenbesnbesbaesbaesbeesbesnesnnesns 11
1.8 WWHAT TO DO NEXT c.ttiuviiutiitreiteeiteesteetesssestsestesstesssesssssssssssesssessssassessesssesssesssessesssesssessesnsesnssssesssesnns 12
2 VARIABLES. ... oottt sttt ettt be e be e e b e et e e ab e e bt e e b e e be e be e beerbe e teeateeabeeabeatee e 13
2.1 RAIM ALLOCATION ...iitiiiteiiteeiteeiteiteastesseesteesesssesssestessbeessessesasssssessssssesssesssessssssesssesssessessessesssesnns 13
2.2 DEFINING VARIABLESvviitteiteeite ettt etestteeteeiteestesitesssessesssesasesassessesssesssesssestessbesssessssnsesssessssssesssesns 14
INEEGET VAITADIES.ottt bttt e et et bt e e e b sbesbesreeneas 14
FLOBLING POINT ...ttt bt bbbt e s e e e e b e s b bt b e e at e st e nb e besbeeeeanes 15
IEEET754 iNteroperabilityoooiiiiii e bbb 15
FIXEA POINE VAFTADIES ...ttt b et b ettt se bbb ens 16
Assigning variables t0 RAM @0UIESSES.cuiie ittt st be b sbe e ene s 18
U oo Lo (=Yoo TCI 10T [T S 19
LOCAI VATTADIES ...ttt s be et st e bt e be e e be et e eabestbesteesbeesbeesbeennas 20
TEMPOTArY VATTADIESvecvice e ettt e re s tesreenaeseeneesteseenrenreanens 21
Arrays, SEIUCLUIES N0 UNIONS......c.ueiviieiieeeeeeeieseste e sesreeeestesaestestesseesaesesteseesresseaseeseenseseeseessessensens 21
T 1= (o TSSOSO PSP 22
1771 L= PSSR 22
2.3 USING RAM BANKS......tiii ittt ettt ettt e e ettt e e e et e e st e e e st b e e e e eate e e e sabeeeeaabaeeessseeesatbeeeeanteeeesnnees 22
The DanK tyPe MOGITIETouiieiice ettt b et seesbe b eneas 23
RAM DANK SEIECTIONccvviiiiiii ettt ettt et e e st e b e e st e e eate e s bbeesbbe e stbeesbbeestaeesbeeesbeeeareeens 24
Manual bank bit UPate FEGIONScuiiie ittt bbb 24
2.8 POINTERS ...ttt i iittete ittt e e ettt e et ee e e ettt e e e eabee e e steeeeaatbeeeaaateseeaabeeaeatbeeeassaeeesabeeaeanteeeesnsseeesssbseesanteeeennnes 24
P OINIEE MOUEIS......vieceiee ittt e e bt e e stb e e et e e s tb e e sbbeestbeeeabeestbeesabeestbeeenbeeesteeebeeens 25
2.5 CONST DATA SUPPORTeeitiiitieiteiite ettt stteeteesteesteeibesseesteestesabeesbeesbeassestsesbeesbaesbeesbesseesasesaseaseearesreans 25
Data 0f SIZ€ 16 DItS OF MOTEvviiviicie ettt b be et e e be e be e e sreesbeesreennas 26
[0 Tor= LT a o I @0 15 A I - S 26
Y T=T o T [= - SR 26
T L1110 =TS 27
1T g0 o MY LT (o g 1= o] S PTPR 27
Const data stored in dediCated fUNCLIONS..........ovieiii ittt e sree e eree e 27
IR I I G 29
3.l ST ATEMENT S .. ettii ittt e e ettt e ettt e e e ettt e e ettt e e s teeeeeabbeeeeaateeeesabeeaestbeeeassaeeesabeeaeanteeeessseeesasbeeeeanteeeennnnes 29
(L) =1 (=] 11T o A SRR UP O PTRROPSROPRRPPR 29
WHITE STALEMENTeei et s b e e et e e st b e e e bt e e s bt e e eate e sbbeeebeeesbaeeeaeeesrbeeenreeaees 29
(O S = LE=1 1 =10 OO OUROURPRRRRON 29
(o (WIS L= 0L PSR ERTOOURURRO RPN 30
(o Y = L =141 | OO PRURRORRPRURRON 30
DFEAK STALEIMENT.veiieeicie ettt be e b e e be b e e st e et esbaesbeesbeesbeesbesnteeneesntennee e 30
CONTINUE STALEIMENT ...ttt ettt ettt et e e be et e e abeeteesbeesbeesbeebeeaeesabesbeesbeebeebeesbessbesseeas 31
FEEUIN STAEMENT. .. .ee et e et e et e e et e e re e e br e e ateeebeeeateeeteeenteeebeeesteeenreeens 31
QOTO STALEIMIENT. ...ttt b bt ettt e st e s b e s b e e s be e s be e b e e b e e ae e ebe e ebe et e e beenbeanbennneas 31
3.2 ASSIGNMENT AND CONDITIONSutiiiiiitiieeiiieeeeiitteeeeatteeeeeteeesstreeeaasseeessbseeaasseeeesassssesssesasssseeeesanes 31

CCB8E C Compiler B Knudsen Data

Special SYNtAX BXAMPIESeiviieeeieiere sttt e e e e te st e stestesreeseeneeeeneenaesrenrenneans 31
(070101 111] T OO SO 32
Bt VAITADIES ...t bbbttt e b e bt e e nn b e ene s 32
Multiplication, division @and MOAUIO...........ccuiiiiiii e 33
Precedence OF C OPEIALOFSc..oiuiiie ittt bbbttt b e bbbttt e e e b ans 33
Mixed variable Sizes are @llOWEAcoiiiiiiiii e e 34
R I 00 Ny 17 N 1 T U O U PP U R OT RO ROPROP 34
CONSEANT BXPIESSIONS ...ttt st ettt ettt b ettt es e et e b e beeb e e be s bt e b e et e s b e sbeeb e e beebe et e e neenbeneenbesbesneans 34
ENUMEIALION ...ttt ettt bbbttt b e bt 35
B FUNCTIONS. ..t ttetteteteseetestes bt s ettt b et b et s bbbtk e s e b e R e b e bt b e e st e b e b bt e b b et e b et et et st 35
FUNCLION FEIUIN VAIUES ...viiiiiciiece e bbbttt 35
Parameters in FUNCLION CallS.........cooiiiiiii e 35
INEEINAL FUNCLIONS ..ottt ettt bbbt es 36
3D T PE CAST ittt ettt bbbt b bbb bbbk bR e bRt b bRt E bbb bbbt bt 37
3.6 ACCESSING PARTS OF A VARIABLEoiutiitiiitieteatesieesieesieesteesteasbesseeassasseesbeesbessbesseesaeesaeesneenseanneans 38
3.7 G EXTENSIONS ...utiiitietiestee bttt ettt et e bt sb e st e b e s bt e eb e e ka4 ab e e ae e 4R e e eb £ ekt e m b e ehbeeb e e nb e e nbeenbeenbeenneeaeeabeenes 39
3.8 PREDEFINED SYMBOLScittettettattauetattasteesteesseassesseesssssseeaseaaseasseasseassesssssseesbesssessssnsesssssssessesnsenns 40
Extensions to the standard C KEYWOITSc.oiuiiiiiiiiieie ettt s 40
Standard C KEYWOITS USEAciviiuiiieiiieieieie sttt sttt bttt e bbbt et e b b e bbb e e 40
THE SIZEOT OPEIALON ...ttt bbbt et b b e st e bt et e et e nbesaesbesbeaneas 40
Function offsetof(struct_type, StruCt._ MEMDEI)cc.ceiiii e 40
Automatically defined macros and SYMbBOIScccoviiiiiiiccc e 41
Y= Yot (oS ot == o o I 1Y 41
Macros _ DATE and TIME ..ottt sttt sr e aneene s 41
3.9 UPWARD COMPATIBILITY t.ettitetettsteseetesteseesesseseesesteseesesteseesessessesessessesestessesessessesessessensasessensasessenens 41
4 PREPROCESSOR DIRECTIVES.......cciiiiititeiitt ettt sttt e st stene b saetesnessasasneseas 42
HABTINE et bbb bR Rt R b b e bt Rt et et e nbenbeeneas 42
IMACEO CONCAENATION ... ittt sttt bttt s e e bbbt e et e s e et e b e st ebe s b e eat e st e e e nbesbeseeanes 42
MaACKEO SEFNGITICATIONcui i bbbt se bbb ens 42
=100 11 o [PPSR UPOURTPRRURRON 43
FUNGET ..ottt bttt h et b e b bt b e b £ e R e et e n b e R e be bt Rt bt e e et e nbenbenre s 43

2 | OSSPSR 44
(01 OSSP RP PR 44
110 L TP P PR 44
=]) OO P PR 44
] 1TSS PP PR 44
HENAIT ... bbb R bRt b et b et e et b n et s 44
22T 0 (0] ST TP PTUPTUPTURTPROTN 45
117 L o [o TSV UU U PPOUUPRTRTRROS 45
FEITIESSATE . veteeteetee ettt ettt e bt ettt a bt st e bt E e h e ekt oAb e oA e e Rt e R £ e R £ oA R £ e R b e SR Re SRR e eE e e eRe e Rt e b e eR b e nbeenbe e beebeanneas 45
4.1 THE PRAGMA STATEMENT ..cuutiittetietiastesieesteesteesseesteasseassessseassesbeeaseaaeeasseassesbeeaaeeabeebeanbeasbesseesbeesenas 45
HPragma ACCESSGPR SN ...ttt ettt sb e bttt e e e e e be e ebe e sbeebeenbesnbennne s 45
#pragma alignLsbOrigin <a> [10 <D>] .cviiiiiii i 45
HPragMa ASM2VAL L.....eeiieeieeieiieeeee st e seeste e e e e s e sseesreesaeenseeseeassesseesseesseesteeseeanseaneeassesseessennseenennnenns 45
#pragma assert [/] <type> <text field>........c.coovreiiiiii e 45
#pragma assume *<pointer= in rambank <N>ccocvviiiiiiiiiin e 45
#pragma bankOrigin SINS ... r et na e renreere s 46
#pragma bit <name> @ <N.B or variable[.B]>......cccccoeriiiiiiiiirsicece e 46
#pragma cdata[ADDRESS] = <SVXS>, .., VXSS .o 46
#pragma char <name> @ <constant or variable>c..ccovviiiiiinieniense e 46
#pragma Chip [=] SUBVICE™S ...ttt ettt sbesbe b sne s 47
#pragma computedGoto [=] <O,13 ..ot a e 47
#pragma config <setting or symbol definition=>.............cccoiiiiiiiii e 47
#pragma iNHINEMALN 0,13ot bbbttt sb e b bbb sne s 48
20 o101 = ST (O3 PSSR 48

CCB8E C Compiler B Knudsen Data

#pragma interruptSaveCNECK <NW,E> ...t sresrenreeneas 48
#pragma intSRC_=<ID>,<vector_nr=>[,<COMMENT>]cccvvveiiieiire e 48
HPragma lIDrary SO/L> ...ttt bbbt s et et saesbesbeene s 48
#pragma mainStack <minVarSize> @ <IowestStartAddr=...........cccccvvririiinieneineee e 49
#pragma minorStack <maxVarSize> @ <lowestStartAddr=cccooiiiiiini i 49
#pragma optimize [=] [N:] SO,L> ..ot be e 49
#pragma Origin [S] <EXPIESSION >coiiiiiiieie sttt e ettt sttt ettt esbe bt s e et e sbesaesbesbesneas 50
#pragma rambank [=] <-,0,1,2,..,153 ..o e 50
#pragma rambase [S] N> ... et re e ere s 50
HPragMa FESEIVECION N> ..ottt a e b e sab e s b e e sbb e e s bt e e sab e e srbeennneenees 50
#pragma return[<n>] = <Strings OF CONSLANIS™.........ccccuerviriiiirierir s eeeee e eneas 50
#pragma sectionDef <name> [:<id> <start> <end> [PROTECTED]]c.cccccovvvrrmrrrirrivsnsnsnannns 51
#pragma SharedATOCALIONcc.eiiiiieie ettt e e e e e e testesresresreeneas 51
#Pragma StACKLEVEIS N> ..o ettt re e renreene s 51
HPragma UNTOCKISRc..iiiieeee bbb bbb e bt et e e e beseesbesbeeneas 51
#pragma updateBank [entry | exit | default] [Z] <O,1> ...oooiiiiiiiiiie s 51
#pragma VersionFile [<FIEST ..o e 52
4.2 PICMICRO CONFIGURATIONcttiitiitiestiitiste sttt sttt sre bbbt sr bbb e en bbb esne e 52
5 COMMAND LINE OPTIONS ...ttt sttt sttt sttt et sttt s resnens 54
5.1 OPTIONS IN A FILE ...tiutitiitisit sttt sr st h bbb e e bbb bt et sn e en b an s 57
5.2 AUTOMATIC INCREMENTING VERSION NUMBER IN A FILE ...c..ctiiieiinieieniniesieesresieesie e neeseseeseeseseens 57
5.3 ENVIRONMENT VARIABLESc.vtttitiietistesieteatestesesteseesestestesestestesesteseesestessesestessesestesbenessessenessesseseans 58
B PROGRAM CODE ..ottt sttt ettt sttt sttt s b ettt s bt et s b et et bt be st e b et 59
6.1 SUBROUTINE CALL LEVEL CHECKINGcutittiitirteietistesiesestes ettt st st sne st et ssese st snenenes 59
Stack level checking When USING INTEITUPL.........cveriieiiri et 59
Functions shared between independent Call treeS.........coviiiiiiiiiiiii e 59
RECUISIVE FUNCHIONS. ...ttt bbb bbbt et e e e besaesneanes 59
0.2 INTERRUPTS ...cutitiitiitiitistesie ettt sh sttt h ket e b b bbb e e b bbb ekt se b e an s 60
The ENNANCEA PICL8 COE.....c.eiiiieieeitiieetee ettt bttt e e bbbt bt b e e sbesbeeneas 60
The OFIgiNAl PICL8 COME......uiiiitiieitieieii ettt bbbttt e e bbbt et e et et e e sbesbeeneas 62
Custom INErrUPt SAVE ANA FESTOIEc.eiuiiieiiie ettt st s b ettt e b b sae s 64
6.3 STARTUP AND TERMINATION CODEceuvitiiinieiiniisietistesiesestesiesessestesessessesessessessssestessesessessesessessesens 65
Clearing ALL RAM I0CALIONSc.voveierieiesiesieseeeseese e st e s e e et sreste s e enae e eneeseeseesresnesneanes 65
8.4 LIBRARY SUPPORT ...ttuviuiititeteatentesestessesestesseseasesseseasesseseasessesessesseseasesseseasessessasesseseasesseseasensessasensenes 65
MAEN TIDFAITES ...ttt nr s 66
a1l L= a1 o] oL =TSSR 66

L ol o011 LB 11 o] = LTSS 67
F10ating POINt IIDFATIESoiiie ettt sae e 68
Floating point library fUNCHIONScooiiii e e 69
Fast and compact iNliNE OPEIALIONScoiiiiiiieieie ettt sae s 71
Combining inline integer math and library calls............ccoooiiiiiiii e 71
FiXEU POINT EXAMPIE ...ttt bttt e e st b e bbbt et e e e e besbeeeeanes 72
Floating POINt EXaMPIE.....c.viiee et naeereenes 72
HOW 0 SAVE COUR......ceuiriiiireics ettt 73
8.5 INLINE ASSEMBLYttutiuiititeieatesteseetesteseatesseseatesseseabe st seabe s s eab e st es e bt e s e bt e et st et e bt st n b e st s e b e ntenes 73
DireCt COABA INSLIUCTIONScovvviiireieesie et 78
Generating single instructions USiNGg C StAteMENTS.........cccviviierieriere e 79
6.6 OPTIMIZING THE CODEcuiuiitiitinietistetetestestesestestese st stese st bess b be s abesbe e b st e bt st b e st s be b enenbe b neee 80
L0 o114 TV2=To B 1 - O TP 80
Peephole OPHIMIZATIONocuiiiieee bbbt se bbb 81
6.7 LINKER SUPPORTutittitiittitietie st ar st sne sttt sa s sr bbbt sa bbbkt se bbbt et se b nnean s 81
Using MPLINK 0r @ SiNGIe MOUUIEc..oiiiiiiiiee ettt 82
Restrictions on the demo EAIION ..o e 83
Variables aNnd POINTEESooiiiiiie et b et b e b b e bt e bt et et e benbesbesbeaneas 83

CCB8E C Compiler B Knudsen Data

LOCAI VAITADIES ... bbb 84
HEAAET FIIES ..ttt bbb bbbt 84
USING RAM DANKS ...ttt bbbt e e b e b bbbt e s et enbesbesbeenes 84
BanK DIt UPAATING ..o ettt bbb ne b b eaeenes 85
LYot o] TSP 85
USING COOR SECLIONS ...ttt ettt sttt sttt bttt s et b e bbb e st e s e et e b e sbeebe et e eaten e e e e besbesbeanes 85
Interrupts on the enhanced PIC18 COIe GBVICES.......c.ciuiiiriiiieiieieie ettt e 86
Interrupts on the original PIC18 COre dVICESuiiiiiiiiiie et e 87
LOF 1] I8 V=] ol 1ol q T oo R 87
(070311 o1V (=T oo o TR 87
Recommendations When using MPLINKccoiviioiiiie it 87
IMIPASIM L.ttt R R R R R R R bbb Rt bbbt ne et 88
The MPLINK SCHIPL FIlE ...ttt sresreeneas 88
EXample With 2 MOUAUIESeceveieiee sttt se et naesneens 91
6.8 THE CDATA STATEMENT ...uttitieutieitesteeateesteeateateasseassasseasbeeabeabesseesseesaeeabeabeanbeasbesbseabeesbeesbesneanneanns 94
UsiNg the cdata SLAtEMENTooiiiiieie ettt b et ne bbb ens 95
StOrING EEPROM GALAc.eiiiiiiitiiie ettt bbbttt b e b e b b 96

T DEBUGGINGcct ittt sttt sttt sttt sttt st e be e be st e b e be st e b e e be st e s e ebe s eseebe s e teabe s arentns 97
7.1 COMPILATION ERRORS......ccttitiautiaiiesitesteeateeateateastesssasteesbeesbeasbesseesseesbeeabeabeanbeasbeabbesbeesbeeneeenneannesnns 97
Error and Warning detailSo i e 98
Some common compilation ProbIEMSccociiiiii e 98
7.2 MPLAB DEBUGGING SUPPORTccutittrtititentasestetesestessesessessessasessessasessensssessensasessensasessensesessessenens 98
@8 120 = o0 o o 1o PSSR 99
7.3 ASSERT STATEMENTS. ...utititeteatisteseatesteseatesseseatesseseabessesesbesseseasesses e ebenbes e b et es e abe st e st abenbes e ebenbeneabenbenes 99
7.4 DEBUGGING IN ANOTHER ENVIRONMENTcvtitiieiiitesiereste st este st st see st st et ste st snesestesnesessennes 100
8 FILES PRODUGCEDcocct ittt ettt bbbt ne bt ne st sbe s ane st 101
8.1 HEX FILE ..ottt ettt etttk bbbt ke b e e b e R e e R e e Rt e b e e bt e R b e R b e b e nbe e nbe e nreenas 101
8.2 ASSEMBLY OUTPUT FILE......iiitiiiitiiteeit ettt ettt ettt e et sb e be ettt st e sb e et e e st e e nbeesbeenesnneenes 101
8.3 WARIABLE FILE ...ttt ettt ettt sttt b et at e e bt e bt e bt e st e e b b e nbeesbeenbeeneeennas 102
B4 LIST FILE .. ittt ittt b etk e b e bt e sh e e ke et e ae e R e e eRe e bt e n bt e st e eb b e b e e nbeenbe e nreennas 103
8.5 FUNCTION CALL STRUCTURE ...ccuttittittaittaiteattesteesteebeaaesstesieesseesbeesbeabeenbeasbasssesbeesbeesbessneannesnnesnns 103
8.6 PREPROCESSOR OUTPUT FILE ...ttt ettt ettt sttt bbbt 104
9 APPLICATION NOTES.ottt sttt sttt sttt ettt st 105
0.1 COMPUTED GOTO . c.ttutitititeseetesteneesesteseasesteseesessessesessesseseabessesessestensesesbensasesbe b esesbebesesbenbenesbenbenenes 105
Built in skip(), skipL(), skipM(), skipX() functions for computed gotoccceccerererivriniinnnrininennns 105

L@ T To [T T= VLo 4141 1-T o) 105
R o] Lot 4] o101 7=To o To] (o 1SS 106
COMPULET JOLO FEOIONS.eete ettt ettt sttt e e bbbttt s e e be b e eb e st e eaease e e e besbenbesbeaneas 106
EXAMPIES ..ttt bbb bRt b e b b e bt bt et et et b e ebenreaneas 107
9.2 THE SWITCH STATEMENT ..ttittteiteesteeteete et e ettesteesbeebeeaesseesseesbeesbeeabeabeaabeasbeabeesbeesbeenbeesbeannesnneaans 108
APPENDIX ..ottt ettt s et b s b bR bt ARt R Rt R Rt R bt R e Re et bRttt eneenen 109
ALl PREDEFINED REGISTER NAMEScoitiiitiitiiiiisiie sttt ettt ettt sttt st ste e meesieesbeesbeanbeanneans 109
A2 ASSEMBLY INSTRUCTIONS. .. .c.vettiteieristesiesesteseesestestesesseseesesseseesessessesessessesessessesessessesessessensssessenens 109
Additional for the ENhAnced PICL8 COMEoiiiiiiiiiirieicierte et 111
INSLrUCLION EXECULION TIME ...ttt et e b e et sr et e 111

CCB8E C Compiler B Knudsen Data

1 INTRODUCTION

Welcome to the CC8E C compiler for the Microchip PIC18 family of microcontrollers. The CC8E
compiler enables programming using a subset of the C language. Assembly is no longer required. The
reason for moving to C is clear. Assembly language is generally hard to read and errors are easily
produced.

C enables the following advantages compared to assembly:
» Source code standardization

» Faster program development

» Improved source code readability

» Easier documentation

» Simplified maintenance

« Portable code

The CC8E compiler was designed to generate tight and optimized code. The optimizer automatically
squeezes the code to a minimum. It is possible to write code that compiles into single instructions, but
with C syntax. This means that the C source code can be optimized by rewriting inefficient expressions.

The design priority was not to provide full ANSI C support, but to enable the best possible usage of the
limited code and RAM resources. If the compiler generated less optimal code, this would force assembly
to be used for parts of the code.

CCB8E features

» Local and global variables of 8, 16, 24 and 32 bits, plus bit variables

» Efficient reuse of local variable space

» Generates tight and optimized code

» Produces binary, assembly, list, COD, error, function outline and variable files
* Automatic updating of the bank selection bits

» Enhanced and compact support of bit operations, including bit functions

* Floating and fixed point math up to 32 bits

e Math libraries including functions like sin(), log(), exp(), sqrt(), etc.

e Supports standard C constant data and strings in program memory (const)
« Pointer models of 8 and 16 bits, mixed sizes in same application allowed
 RAM and/or ROM pointers

e The size of single pointers can be automatically chosen by the compiler

» Extended call level by using GOTO instead of CALL when possible

» Access to most assembly instructions through corresponding C statements
* Inline assembly

» Integrated interrupt support

» Device configuration information in source code

Size (in bits) of the variables supported by the different compiler editions:

FREE STANDARD+EXTENDED
i nt eger 8+16 8+16+24+32
fixed - 8+16+24+32
f1 oat 24 16+24+32

1.1 Supported devices

Original PIC18 core devices:
e up to 128k words of code (each module)
e upto 4k byte RAM in 16 banks

CCB8E C Compiler B Knudsen Data

Enhanced Original PIC18 core devices:
e up to 128k words of code (each module)
e up to 16k byte RAM in 64 banks

1.2 Installation and System Requirements

The CC8E compiler uses 32 bit processing (console application) and runs on PC compatible machines
using Microsoft Windows.

Installing CC8E is normally done by running the installation program for the latest version. Multiple
versions can be installed.

CCB8E is now ready to compile C files. Header and C source files have to be created and edited by a
separate editor (not included), for instance in the MPLAB suite.

The UTF-8 representation of the Byte Order Mark is the byte sequence OXEF,0xBB,0xBF. This sequence
is allowed in the start of a source file.

The same installation program can be used to un-install the compiler. Alternatively the CC8E files can be
deleted without any un-installation procedure.

Support for long file names

CC8E supports long file names. It is also possible to use spaces in file names and include directory
names. Equivalent include directory option formats:

-1"C\Program Fi |l es\ cc8e"
-1 C. \ progra~1\cc8e

Equivalent include file formats:
#include "C:\Program Fil es\cc8e\C file"
#i nclude "C:\progra~1\cc8e\Cfil e~1"

The alternative to long names is the truncated short format. The truncated form is decided by the file
system. The best guess consists of the 6 first characters of the long name plus ~1. The last number may be
different (~2) if the first 6 characters are equal to another name in the same directory.

User interface

The CC8E compiler is a command-line program that can be run in a console window in the Windows
environment. It requires a list of command line options to compile a C source file and generate the
required files.

Starting CC8E from Windows can be done by clicking on the executable file. The list of compiler
command line options is then written to a console window. The normal way of using CC8E is to use it as
a tool from an integrate environment like MPLAB X.

Compiling a program requires a file name and command line options:

cc8e -a denp.c <enter>

1.3 MPLAB Support

CCB8E can be selected as a tool in MPLAB X and the older MPLAB, which offers an integrated
environment including editor and tool support (compilers, assemblers, simulators, emulators, device
programmers). Compilation errors are easily handled. MPLAB supports point-and-click to go directly to

CCB8E C Compiler B Knudsen Data

the source line that needs correction. CC8E supports COFF and COD debugging file format. Please refer
to supplied file “install.txt’ for further information.

1.4 The SETCC Utility

SETCC is a small utility application for the CC5X/CC8E compilers. Note that the SETCC utility is only
available for licensed editions. SETCC is useful for:

a) Generating device specific header files
b) Setting config symbols for a device
c) Compiling projects

Reasons for generating header files using SETCC:
- predefined header files may not be ready yet for new devices
- the number of register symbols can be selected
- the bit name format can be selected
- the register and bit names are generated according to the INI and CFGDATA files as found in
the MPLAB X package.

Header file options:
- include all alternative register names (defined in INI file)
- include bit names
- include alternative bit names (defined in INI file)
- include all enumerated bit names
- convert bit names on format NOT_NNN and nNNN to NNN_
a) long bit name format: REGISTERNAME_BITNAME
b) short bit name format: BITNAME - limited set only
c) combined bit name format: BITNAME / REGISTERNAME_BITNAME

The device header files supplied with the compiler can alternatively be used instead of generating new
header files for each project.

Please refer to file ‘setcc.txt’ for further information.

1.5 Summary of Delivered Files

CCBE. EXE : conpiler

SETCC.EXE (1): header file and config utility tool

SETCC. TXT : information on utility tool

| NSTALL. TXT : installation guide

MPLAB- O. TXT . integration with old MPLAB (version 5 - 8.92)
I NLI NE. TXT . information on inline assenbly syntax

CHI P. TXT : how to make new chip definitions

CDATA. TXT : info on the #pragma cdata statenent

CONFI G TXT : the chip configuration bits

LI NKER. TXT : using MPLINK to link several nodules (C or asn)
MATH. TXT : math library support

ERRATA. TXT : silicon errata issues

NEWS. TXT : recent added features

README. TXT : this file

DEFWVPX18. H . conpiler definitions for the MPLAB X GU

CCB8E C Compiler

B Knudsen Data

I NT18XXX. H
HEXCCDES. H

CC8E. MIC
TLCC8E. | NI

OP. I NC
RELOC. | NC

DEMO. C

DEMO- ENH. C
DEMO- VAR. C
DEMO- MAT. C
DEMO- FPM C
DEMO- FXM C
DEMO- ROM C
DEMO- PTR. C
DEMO- I NS. C

MATH16. H
MATH24. H
MATH32. H
MATHL6X.
MATH24X.
MATH32X.
MATHLGF.
MATH24F.
MATH32F
MATH24LB. H

ITITITTITT

MATH32LB. H

mventil.c
nsg. h
bi nsem h

semaphore. h (2):

event. h
del ay. h

18C242. H ..

(1):
(1):
(1):
(1):
(1):
(1):

(1):
(1)

(2):
(2):
(2):

(2):
(2):

i nterrupt header file
direct coded instructions

MPLAB t ool
MPLAB t ool

configuration file
configuration file

conmand line options in a file
options for generating object nodules for linking
syntax deno file

sanple interrupt vector table for enhanced core
defining RAM vari abl es

i nteger math

floating point nmath

fixed point math

const data and DW

tabl es and pointers

generating single instructions

8-16 bit math library

8-24 bit math library

8-32 bit math library

16 bit fixed point library

24 bit fixed point library

32 bit fixed point library

16 bit floating point library
24 bit floating point library
32 bit floating point library
24 bit floating point functions
(log,sqrt, cos,..)

32 bit floating point functions

(log,sqrt, cos,..)

mul titaski ng exanpl e

mul titasking nessage |library

mul titasking binary semaphore library
mul titaski ng semaphore library

mul titasking event library

nmul titasking delay and timng library

header files for specific chip support

(1) Not available in the FREE edition
(2) Only available in the EXTENDED edition

1.6 Short Program Example

/* gl obal variables */
char a;

bit bl, b2,
/* assign names to port pins */

#pragma bit in @ PORTB.0
#pragm bit out @ PORTB.1

10

CCB8E C Compiler B Knudsen Data

voi d sub(void)

{

}

char i; /* a local variable */

/* generate 20 pul ses */

for (i =0; i <20; i++) {
out = 1;
nop();
out = 0;

}

voi d mai n(voi d)

{

/*

/1 if (TO==1 &% PD==1/* power up */) {
/1 WARM RESET:

/1 clearRAM); // clear all RAM

1}

first decide the initial output |evel

on the output port pins, and then

define the input/output configuration.

Thi s avoi ds spi kes at the output pins. */

PORTA
TRI SA

Ob. 0010; /* out =1 */
Ob. 1111.0001; /* xxxx 0001 */

a=29;, /* value assigned to global variable */

do
if (in==20) /* stopif "in" is low*/
br eak;
sub() ;
} while (-- a>0); [/* 9iterations */

/1 if (some condition)
/1 got o WARM RESET;

/* main is termnated by a SLEEP instruction */

1.7 Defining the PICmicro Device
CCB8E offers 3 ways to select the PICmicro device in an application:

1) By a command line option. MPLAB will generate this option automatically.

- p18F242

2) By a pragma statement in the source code. Note that the —p command line option will override the
selection done by #pragma chip. This pragma should not be used in combination with MPLAB.

#pragma chi p Pl C18F242

11

CCB8E C Compiler B Knudsen Data

3) By using include to directly select a header file. This is not recommended because there will be an
error if the command line option is also used.

#i ncl ude "18F242. h"

NOTE 1: When using a pragma statement or include file, remember to use it in the beginning of the C
program so that it is compiled first. However, some preprocessor statements like #define and #if may
precede the #include/#pragma statement.

NOTE 2: CC8E will use automatic include of the right header file when using the —p<device> or
#pragma chip statement.

NOTE 3: If the header file does not reside in the default project folder, then the path name is required.
This can be supplied by a command line option as an include folder/directory (-I<path>).

NOTE 4: Debugging means that the debugger may use certain device resources. These resources should
not be used by the application during debugging. The debugger and device documentation should be
consulted. Reservations for some devices are supplied in the device header files. The device header file
should also be inspected. Activating the reservations is done by defining a symbol before the header file
is compiled:

a) By a command line option:
- DI CD2_DEBUG

b) By using #define in combination with #pragma chip or #include:
#defi ne | CD2_DEBUG

#pragma chi p Pl CL8F452 /1 or #include "18F452. H'

1.8 What to do next

It is important to know the PICmicro family and the tools well. The easiest way to start is to read the
available documentation and experiment with the examples. Then move on to a simple project. Some
suggestions:

e study the supplied program samples

» compile code fragments and check out what the compiler accepts

» study the optional assembly file produced by the compiler

Typical steps when developing programs are as follows:
e describe the system; make requirements

e suggest solutions that satisfy these requirements

e write detailed code in the C language

e compile the program using the CC8E compiler

» test the program on a prototype or a simulator

Writing programs for the PICmicro microcontroller family requires careful planning. Program and RAM
space are limited, and the key question is often: Will the application code fit into the selected device?

12

CCB8E C Compiler B Knudsen Data

2 VARIABLES

The compiler prints information on the screen when compiling. Most important are error messages, and
how much RAM and PROGRAM space the program requires. The compiler output information is also
written to file *.occ. Example:

CC8E Version 1.2, Copyright (c) B Knudsen Data, Norway 2001-2004
--> EXTENDED edition, 8-32 bit int, 16-32 bit float, 32k code words
18\ deno. c:
Chip = 18C242
RAM :

6****** *kkkkkkkk *kkkkkk*x *kkkkkk*

40h khkkhkhkhkkhkk *hkhkhkhkhkkhkk *hkhkhkhkhkkdkk *hkhkhkhkhkdkk*x *hkhkhkhkkd*x *hkkkhkk*k*x **k*k*kk*k*x*x **k*kkkk*k*%
80h- kkkkkk *khkkkkhkkhkkk *khkkkhkkhkkhkkk *khkkhkkhkkhkkhkkk kkhkkhkkhkkhkkhkkk kkhkkkhkkhkkhkkk kkhkkkhkkhkkhkkk kkhkkkkkk*k
mh- kkkkkhkkhkkhkk *khkkkhkkhkkhkkk *khkkhkkhkkhkkhkkhkk *khkkhkkhkkhkkhkkk *khkkhkkkkkk *kkkkhkkhkkk kkkkkkkk kkhkkkkkk*k

Bank 0:220 1:254 bytes free
RAM usage: 38 bytes (31 local), 474 bytes free
File 'denpo.fcs'
Optimzing - renoved 27 code words (-16 %
File 'denp.var'
File 'denp. asn
File 'denp.|st'
File 'denp. cod'
File 'denp. occ'
File 'denp. hex'
Total of 175 code words (2 %

2.1 RAM allocation

Priority when allocating variables:

1. Variables permanently assigned to a location
2. Local variables allocated by the compiler
3. Global variables allocated by the compiler

The compiler prints information on RAM allocation. A full map is printed for the access bank and bank 0,
which is useful to check out which RAM locations are still free. Detailed information on memory
allocation is written to file <src>.var when using the -V command line option.

Symbols:
* : free location
: predefined or pragna variable
= . local variable(s)
.. global variable
7 : 7 free bits in this location

The compiler first allocates space for all variables no larger than 256 bytes. Then the remaining (large)
variables will be allocated. Variables are allocated from the start of each bank.

Using bank type modifiers on variables (tables, structures) larger than 256 bytes tells the compiler NOT
to use a lower bank, but the actual bank can be higher depending on free space. The search is done from
the bank stated (or address 0) towards higher addresses. Manual allocation (fixed address) should be
considered for such large items. The compiler will then allocate the remaining variables at the free space.
It is normally only large variables that may need manual allocation, but also smaller variables that need to
cross a bank boundary.

13

CCB8E C Compiler B Knudsen Data

2.2 Defining Variables

CCB8E supports integer, fixed and floating point variables. The variable sizes are 1, 8, 16, 24 and 32 bit.
The default int size is 8 bits, and long is 16 bits. Char variables are unsigned by default and thus range
from 0 to 255. Note that 32 bit integer variables are not supported by all CC8E editions.

Math libraries may have to be included for math operations (Chapter 6.4 Library Support on page 65).

CCB8E uses LOW ORDER FIRST (or little-endian) on variables. This means that the least significant byte
of a variable is assigned to the lowest address. All variables are allocated from low RAM addresses and
upwards. Each RAM location can contain 8 bit variables. Address regions used for special purpose
registers are not available for normal allocation. An error message is produced when there is no space left
in a specific RAM bank or in the access bank. Tables and structures greater than 256 byte are allowed.

Note that variables are assigned to the access bank by default. See Chapter 2.3 Using RAM Banks on page
22 on how to use RAM banks.

Special purpose registers are either predefined or defined in chip-specific header files. This applies to
WREG, INDFO, PCL, STATUS, FSRO, Carry, etc.

Integer variables

unsi gned a8; /1 8 bit unsigned
char a8; /1 8 bit unsigned
unsi gned | ong i 16; /1 16 bit unsigned
char varX;

char counter, L_byte, H byte;
bit ready; // 0 or 1
bit flag, stop, senafor;

int i; /1 8 bit signed
signed char sc; // 8 bit signed
| ong i 16; /1 16 bit signed

uns8 u8; // 8 bit unsigned
unsl1l6 ul6; // 16 bit unsigned
uns24 u24; // 24 bit unsigned
uns32 u32; // 32 bit unsigned

int8 s8 // 8 bit signed
int1l6 s16; // 16 bit signed
int24 s24; |/ 24 bit signed
int32 s32; // 32 bit signed

The bitfield syntax can also be used:
unsi gned x : 24; /1 24 bit unsigned
int y: 16; /1 16 bit signed

The value range of the variables are:

TYPE SIZE M N MAX
int8 1 -128 127
intl6 2 - 32768 32767
i nt24 3 - 8388608 8388607
i nt32 4 -2147483648 2147483647

14

CCB8E C Compiler

B Knudsen Data

uns8 1 0 255
unsl6 2 0 65535
uns24 3 0 16777215
uns32 4 0 4294967295

Floating point

The compiler supports 16, 24 and 32 bit floating point. The supported 32 bit floating point format can be
converted to and from the IEEE754 format by 3 instructions (macro in math32f.h).

Supported floating point types:

float 16 16 bit floating point

float, float24 24 bit floating point

double, float32 : 32 bit floating point

For mat Resol ution Range

16 bit 2.4 digits +/- 3.4e38, +/- 1.1e-38
24 bit 4.8 digits +/- 3.4e38, +/- 1.1le-38
32 bit 7.2 digits +/- 3.4e38, +/- 1.1le-38

Note that 16 bit floating point is intended for special use where accuracy is less important. More details
on the floating point formats is found in ‘math.txt’. Information on floating point libraries are found in
Chapter 6.4 Library Support on page 65.

Floating point exception flags

The floating point flags are accessible in the application program. At program startup the flags should be
initialized:

/'l reset all flags, disable rounding
/1 enabl e roundi ng

FpFl ags = O;
FpRoundi ng = 1;

Also, after an exception is detected and handled in the application, the exception bit should be cleared so
that new exceptions can be detected. Exceptions can be ignored if this is most convenient. New
operations are not affected by old exceptions. This also enables delayed handling of exceptions. Only the
application program can clear exception flags.

char FpFlags; // contains the floating point flags
bit FpOverfl ow @ FpFlags.1; // fp overflow
bit FpUnderFlow @ FpFlags.2; // fp underflow
bit FpDiv0 @FpFlags.3; // fp divide by zero
bit FpDomai nError @ FpFl ags.5; // domain error
bit FpRoundi ng @ FpFl ags. 6; // fp rounding

/1 FpRoundi ng=0: truncation

/1 FpRoundi ng=1: unbiased rounding to nearest LSB

IEEE754 interoperability

The floating point format used is not equivalent to the IEEE754 standard, but the difference is very small.
The reason for using a different format is code efficiency. IEEE compatibility is needed when floating
point values are exchanged with the outside world. It may also happen that inspecting variables during
debugging requires the IEEE754 format on some emulators/debuggers. Macros for converting to and
from IEEE754 are available:

15

CCB8E C Compiler B Knudsen Data

mat h32f . h:
/1 before sending a floating point val ue:
fl oat 32Tol EEE754(f | oat Var) ;

/1 change to | EEE754 (3 instr.)

/1l before using a floating point val ue received:
| EEE754ToFl oat 32(f | oat Var) ;
/1 change from | EEE754 (3 instr.)

mat h24f . h:
fl oat 24Tol EEE754(f | oat Var) ;
/1 change to | EEE754 (3 instr.)
| EEE754ToFl oat 24(f | oat Var) ;
/1 change from | EEE754 (3 instr.)

Fixed point variables

Fixed point can be used instead of floating point, mainly to save program space. Fixed point math uses
formats where the decimal point is permanently set at byte boundaries. For example, fixed8_8 uses one
byte for the integer part and one byte for the decimal part. Fixed point operations map to integer
operations except for multiplication and division, which are supported by library functions. Information
on fixed point libraries is found in Chapter 6.4 Library Support on page 65.

fixed8 8 fx;

fx.low8 : Least significant byte, deciml part
fx.high8 : Mst significant byte, integer part

MSB LSB 1/256 = 0.00390625

07 01 : 7 + 0x01*0.00390625 = 7.0039625

07 80 : 7 + 0x80*0.00390625 = 7.5

07 FF : 7 + OxFF*0. 00390625 = 7.99609375

00 00 : O

FF 00 : -1

FF FF : -1 + OxFF*0. 00390625 = -0.0039625

7F 00 : +127

7F FF : +127 + OxFF*0. 00390625 = 127.99609375
80 00 : -128

Convention: fixed<S><I|>_<D>:
<S> : 'U : unsigned
<none>: si gned
<I>: nunber of integer bits
<D> : nunber of decinmal bits

Thus, fixed16_8 uses 16 bits for the integer part plus 8 bits for the decimal, for a total of 24 bits. The
resolution for fixed16_8 is 1/256=0.0039, which is the lowest possible increment. This is equivalent to 2
decimal digits (actually 2.4 decimal digits).

Built in fixed point types:

Type: #byt es Range Resol ution
fixed8_8 2 (1+1) -128, +127.996 0. 00390625
fixed8_16 3 (1+2) -128, +127.99998 0. 000015259
fixed8_24 4 (1+3) -128, +127.99999994 0. 000000059605
fixedl6_8 3 (2+1) -32768, +32767.996 0. 00390625
fixedl6_16 4 (2+2) -32768, +32767.99998 0.000015259
fixed24_8 4 (3+1) -8388608, +8388607.996 0.00390625

16

CCB8E C Compiler

B Knudsen Data

fixedUs_8 2 (1+1) 0, +255.996 0. 00390625
fixedUs 16 3 (1+2) 0, +255.99998 0. 000015259
fixedUs_24 4 (1+3) 0, +255.99999994 0. 000000059605
fixedUuls 8 3 (2+1) 0, +65535.996 0. 00390625
fixedUl6_16 4 (2+2) 0, +65535.99998 0.000015259
fixedU24 8 4 (3+1) 0, +16777215.996 0. 00390625
(additional types with decimals only; no integer part)
fixed 8 1 (0+1) -0.5, +0.496 0. 00390625
fixed 16 2 (0+2) -0.5, +0.49998 0. 000015259
fixed_24 3 (0+3) -0.5, +0.49999994 0. 000000059605
fixed_32 4 (0+4) -0.5, +0.4999999998 0. 0000000002328
fixedU 8 1 (0+1) 0, +0.996 0. 00390625
fixedU 16 2 (0+2) 0, +0.99998 0. 000015259
fixedU 24 3 (0+3) 0, +0.99999994 0. 000000059605
fixedU 32 4 (0+4) 0, +0.9999999998 0. 0000000002328

To sum up:

1. All types ending on _8 have 2 correct digits after the decimal point

2. All types ending on _16 have 4 correct digits after the decimal point

3. All types ending on _24 have 7 correct digits after the decimal point

4. All types ending on _32 have 9 correct digits after the decimal point

Fixed point constants
The 32 bit floating point format is used during compilation and calculation.

fixed8 8 a = 10. 24;
fixedl6 8 a = 8 * 1.23;
fixed8 16 x = 2. 3e-3;
fixed8 16 x = 23.45e1;
fixed8 16 x = 23.45e-2;
fixed8 16 x = 0.
fixed8 16 x = -1.23;

Constant rounding error example:
Constant: 0.036
Variable type: fixedl6 8 (1 byte for deci mals)

Error cal cul ation: 0.036*256=9.216. The byte val ues assigned to the

variable are sinmply 0,0,9. The error is (9/256-0.036)/0.036 - 0. 023.

The conpiler prints this normalized error as a warning.

Type conversion
The fixed point types are handled as subtypes of float. Type casts are therefore infrequently required.

Fixed point interoperability

It is recommended to stick to one fixed point format in a program. The main problem when using mixed
types is the enormous number of combinations which makes library support a challenge. However, many
mixed operations are allowed when CC8E can map the types to the built in integer code generator:

fixed8 16 a, b;

fixed 16 c;

a=»>b+c; /1 OK, code is generated directly
a=>b* 10.22; // OK Ilibrary function is supplied

17

CCB8E C Compiler B Knudsen Data

a=b*c; // anewuser library function is required!

/1l a type cast can select an existing library function:
a=>b* (fixed8_16)c;

Assigning variables to RAM addresses

All variables, including structures and arrays, can be assigned to fixed address locations. This is useful for
assigning names to port pins. It is also possible to define overlapping variables (similar to union).
Variables can overlap parts of another variable, table or structure. Multiple levels of overlapping are
allowed. The syntax is:

<vari abl e_definition> @<address | (constant_expression)>;
<vari abl e_definition> @<vari abl e_el emrent >;

Examples:

char th @ 0x25;
/1bit thl @0x25.1; // overlap warning
bit thl @th. 1; /1 no warni ng

char tty;

bit bo;

char io @tty;

bit bx0 @ bO;

bit bx2b @tty. 7;

//char tui @ bO; !/l size exceeded
/llong r @tty; /1 size exceeded

char tab[5];

long tr @tab;

struct {
long ti M
| ong uu;

} ham @t ab;

char aa @ttb[2]; /1 char ttb[10];

bit ab @aa.7; /1 a second | evel of overlapping
bit bb @ttb[1].1;

size2 char *cc @da.a; // 'da' is a struct

char dd[3] @da.sloi[1].pi.ncup;

unsle ee @fx.mdl6; // float32 fx;

TypeX ii @tab; /1 TypeX is a typedef struct

An expression can define the address of a variable. This makes it easier to move a collection of variables.

char tty @ (50+1-1+2);
bit ttl @(50+1-1+2+1). 3;
bit tt2 @(50+1-1+2+1). BX1; /[l enum{ .., BX1, .. };

Pragma statements can also be used (limited to bit and char types):
#pragma char port @ PORTC
#pragma char varX @ 0x23
#pragma bit 10Opin @PORTA 1
#pragm bit ready @ 0x20.2

18

CCB8E C Compiler B Knudsen Data

If the compiler detects double assignments to the same RAM location, this will cause a warning to be
printed. The warning can be avoided if the second assignment uses the variable name from the first
assignment instead of the address (#pragma char var2 @ varl).

An alternative is to use the #define statement:

#define PORTX PORTC
#define ready PA2

The shadowDef type modifier allows local and global variables and function parameters to be assigned to
specific addresses without affecting normal variable allocation. The compiler will ignore the presence of
these variables when allocating global and local variable space.

shadowDef char gx70 @O0x70; // global or |ocal variable
The above definition allows location 0x70 to be inspected and modified through variable 'gx70".

Function parameters can be assigned to addresses. No other variables will be assigned by the compiler to
these locations. Such manual allocation can be useful when reusing RAM locations manually.

void witeByte(char addr @0x70, char value @O0x71) { .. }
This syntax is also possible on function prototypes.

Parameter transfer can be omitted for functions sharing overlapping parameters. This also applies to bit
parameters:

bit sharedBitPar;
bit func2(bit par @sharedBitPar) { /*..*/ return Carry; }
bit funcl(bit par @sharedBitPar) { /*..*/ return func2(par); }

Supported type modifiers

static char a; [/* a global variable; known in the current nodul e
only, or having the sane nanme scope as | ocal variables when used in a
| ocal block */

extern char a; // global variable (in another nodul e)

auto char a; [// local variable
/1 "auto' is normally not used

regi ster char a; // ignored type nodifier

const char a; /* ‘const’ tells that conpiler that the data is not
nodi fied. This allows global data to be put in programnmenory. */

volatile char a; /* ignored type nodifier. Note that CC8E uses the
address to automatically decide that nost of the special purpose
registers are volatile */

pageO void fx(void); // |GNORED by CC8E
/'l pageO, pagel, page2, page3

bankO char a; // variable ‘a resides in RAM bank 0

/1 bankO, bank1, bank2, .., bank15
/'l shrBank, accessBank : access bank (unbanked)

19

CCB8E C Compiler B Knudsen Data

size2 char *px; [/ pointer px is 16 bits wide
[l sizel,size2

shadowDef char gx70 @Ox70; /* a variable can be assigned to a
| ocation without affecting normal allocation */

Local variables

Local variables are supported. The compiler performs a safe compression by checking the scope of the
variables and reusing the locations when possible. The limited RAM space is therefore used efficiently.
This feature is very useful, because deciding which variables can safely overlap is time consuming,
especially during program redesign. Function parameters are located together with local variables.

Variables should be defined in the innermost block, because this allows best reuse of RAM locations. It is
also possible to add inner blocks just to reduce the scope of the variables as shown in the following
example:

voi d mai n(voi d)

{
char i; /* no reuse is possible at the
outernost |evel of 'main' */
i = 9;
{ [// an inner block is added
char a;
for (a = 0; a < 10; at+)
i += fx(PORTB, 0);
}
sub(i);
{ /1 another inner block to enable better reuse
char b = s + 1;
int il=-1, i2 = 0;
/] nore code
}
}

Local variables may have the same name. However, the compiler adds an extension to produce a unique
name in the assembly, list and COD files. When a function is not called (defined but not in use), then all
parameters and local variables are truncated to the same (unused) location.

Local variables will normally reside in a single block not crossing any bank boundaries, but it is possible
to define a large stack that may cross bank boundaries. The compiler will not move local variables from
the access bank to bank 0. Such moving is allowed for global variables, although with a warning.

The stack for local variables, parameters and temporary variables is normally allocated separately in each
bank and the access bank. The bank is normally defined the same way as global variables through
#pragma rambank or bank type modifiers. This makes it possible to split the stack into several
independent stacks. Using a single stack is normally recommended, but sometimes this is not possible
when the stack size is too large.

Using a large stack

It is possible to use a single main stack for all local variables. The main stack is not an additional stack,
but tells the compiler where the main stack is located (which bank). The main stack can be larger than a
single bank, and is defined by the following pragma statement:

#pragm mai nStack 3 @0x110 // set lower nmain stack address

20

CCB8E C Compiler B Knudsen Data

Using this pragma means that local variables, parameters and temporary variables of size 3 bytes and
larger (including tables and structures) will be stored in a single stack allocated no lower than address
0x110. Smaller variables and variables with a bank modifier will be stored according to the default/other
rules. Using size 0 means all variables including bit variables.

Note that #pragma rambank is ignored for variables stored in the main stack. Addresses ranging from
0x100 to Ox1FF are equivalent to the bankl type modifier, although the actual bank will be different after
stack allocation for some variables if the main stack crosses a bank boundary.

In some cases it will be efficient to use the access bank or a specific bank for local variables up to a
certain size. This is possible by using the following pragma:

#pragm mi nor Stack 2 @ 0x10

In this case, local variables, parameters and temporary variables up to 2 bytes will be put in the access
bank from address 0x10 and upward. Larger variables and variables with a bank modifier will be stored
according to the default/other rules. Using size 0 means bit variables only. This pragma can be used in
combination with the main stack. The variable size defined by the minor stack has priority over the main
stack.

The most efficient RAM usage is to use a single stack. Separation into different stacks increases total
RAM usage, and should be avoided if possible.

Temporary variables

Operations like multiplication, division, modulo division and shifts often require temporary variables.
However, the compiler needs NO PERMANENT SPACE for temporary variables.

The temporary variables are allocated the same way as local variables, but with a narrow scope. This

means that the RAM locations can be reused in other parts of the program. This is an efficient strategy
and often no extra space is required in application programs.

Arrays, structures and unions
One dimensional arrays are implemented.

char t[10], i, index, x, tenp;
unsl1l6 tx[3];

tx[i] = 10000;

t[1] = t[i] * 20; [/ ok

t[i] =t[x] * 20; // not allowed
temp = t[x] * 20;

t[i] = tenp;

Normal C structures can be defined, as can nested types. Unions are allowed.

struct hh {

| ong a;
char b;
} vxli;
union {
struct {
char a;

21

CCB8E C Compiler B Knudsen Data

intl6 i;
}opp;
char x[4];
uns32 | ;
} uni;

/1 accessing structure elenents
vxl.a = -10000;
uni.x[3] = vxl.b - 10;

The equivalent of a (small) multidimensional array can be constructed by using a structure. However,
only one index can be a variable.
struct {
char e[4];
char i;
} multi[5];

multi[x].e[3] = 4;
multi[2].e[i+1] += tenp;

Bitfields
Bitfields in structures are allowed. The size has to be 1, 8, 16, 24 or 32 bits.

struct bitfield {
unsi gned a : 1;

bi t C;
unsigned d : 32;
char aa;

} zz;

The CC8E compiler also allows the bitfield syntax to be used outside structures as a general way of
defining variable size:

int x : 24; // a 24 bit signed variable

Typedef

Typedef allows defining new type identifiers consisting of structures or other data types:
typedef struct hh HH;
HH var 1,

typedef unsigned ux : 16; // equal to unsl6
ux r, a, b;

2.3 Using RAM Banks
The RAM bank definitions are:

access bank: 0x000 — OxO07F and OxF80 — OxFFF

bank O: 0x080 — OxOFF
bank 1: 0x100 — Ox1FF
bank 2: 0x200 — Ox2FF
bank 15: O0XFO0 — OXF7F

Using more than one RAM bank is done by setting the active rambank:

22

CCB8E C Compiler B Knudsen Data

/* variabl es preceding the first ranbank statenent are placed in the
access bank. This is also valid for |ocal variables and paraneters */

#pragma ranbank 1

char a,b,c; /* a,b and c are located in bank 1 */
/* parameters and | ocal variables in functions placed here are al so
| ocated in bank 1 ! */

#pragma ranmbank 0
char d; /* located in bank 0 */

The compiler automatically finds the first free location in the selected bank.

NOTE: Local variables and function parameters also have to be located. It may be necessary to use
#pragma rambank between some of the functions and even INSIDE a function. The recommended

strategy is to locate local variables and function parameters in the access bank. The access bank is

selected by:

#pragma ranmbank —

The bank type modifier
It is also possible to use the bank type modifier to select the RAM bank.

bankO. . bank15, shrBank/accessBank : can repl ace #pragma ranmbank
/1 shrBank and accessBank is the access bank

bankl char tx[3]; // tx[] is located in bank 1

The bank type modifier defines the RAM bank to locate the variable. It can locate global variables,
function parameters and local variables. The bank type modifier applies to the variable itself, but not to
the data accessed. This difference is important for pointers.

NOTE 1: The bank type modifier has higher priority than #pragma rambank.

NOTE 2: Using 'extern' makes it possible to state the variable definition several times. However, the first
definition defines the rambank, and later definitions must use the same bank.

NOTE 3: When defining a function prototype, this will normally not locate the function parameters.
However, when adding a bank type modifier to a function parameter in a prototype, this will define the
bank to be used for this variable.

If variables are located in non-existing RAM banks for a device, these variables are mapped into existing
RAM banks (bank 0). This applies to the bank type modifiers and the #pragma rambank statement.

Using RAM banks requires some planning. The optimal placement requires the least code to update the
bank selection bits. Some advice when locating variables:

All local variables and function parameters should preferably be put in the access bank.
The most frequently used variables (except arrays) should be placed in the access bank.
It is efficient to put the most frequent used arrays in bank 0

Try to locate variables which are close related to each other in the same bank.

Try to locate all variables accessed in the same function in the same bank.

agrwbdE

23

CCB8E C Compiler B Knudsen Data

RAM bank selection

RAM and special purpose registers can be located in up to 16 banks. A special bank instruction is used to
select the right bank.

The bank selection bits are automatically checked and updated by the compiler, and attempts to update
the bank in the source code may be removed by the compiler. This feature can be switched off, which
means that correct updating has to be done in the source code.

The compiler uses global optimizing techniques to minimize the extra code needed to update the bank
selection bits. Removing all unnecessary updating is difficult. However, there should be few redundant
instructions.

NOTE: The compiler REMOVE attempts to use the bank instruction (MOVLB) in user source code.
However, it is possible to switch to manual updating with the -b command line option, or locally by a
pragma statement.

Manual bank bit update regions
The automatic updating can be switched off locally. This is done by pragma statements:

#pragm updateBank 0 /* OFF */
#pragm updat eBank 1 /* ON */

These statements can be inserted anywhere, but they should surround the smallest possible region. Please
check the generated assembly code to ensure that the desired result is achieved. Another use of #pragma
updateBank is to instruct the bank update algorithm to do certain selections. Refer to Section #pragma
updateBank on page 51 in Chapter 4.1 The pragma Statement for more details.

NOTE: The safest coding is to not assume any specific contents of the bank selection bits when a local
update region is started. The compiler uses complex rules to update the bank selection bits outside the
local regions. Also, all updating inside a local update region is traced to enable optimal updating when the
local update region ends.

2.4 Pointers
Single level pointers are implemented.

char t[10], *p;

p = &[1];
*p = 100;
p[2] ++;

The compiler allows using an 8 bit RAM pointer when all accesses using this pointer are limited to the
same bank. The bank is automatically detected and used. In some cases it may be necessary to define this
bank directly, for example when using a 8 bit pointer from several modules through relocatable assembly.
An error message is printed if a restricted pointer is loaded with an address from the wrong RAM bank.

bankl char t[10];
bank3 char *pi;
#pragm assume *pi in ranmbank 1

i = &t[2]:

24

CCB8E C Compiler B Knudsen Data

Pointer models

Using 8 bit pointers when possible saves both code and RAM space. CC8E allows the size of all single
pointers to be decided automatically. However, pointers in structures and arrays have to be decided in
advance, by using the memory model command line options or a size type modifier. Note that the
operator ‘sizeof(pointer)” will lock the size according to the chosen default model. Using sizeof(pointer)
is normally not required and should be avoided.

Default pointer sizes are used only when the pointer size is not chosen dynamically. The priority when
deciding the pointer size is:

1) Pointer size type modifiers

2) Automatically chosen pointer size (single pointers)

3) Pointer size chosen according to the default model

Command line options:
-mcl : default ‘const’ pointer size is 1 byte (8 bits)
-mc2 : default ‘const' pointer size is 2 bytes (16 bits)
-mrl : default RAM pointer size is 1 byte
-mr2 : default RAM pointer size is 2 bytes
-mm1 : default pointer size is 1 byte (all pointer types)
-mm?2 : default pointer size is 2 bytes (all pointer types)

Pointer size type modifiers:
e sizel: pointer size is 1 byte (8 bits)
e size2: pointer size is 2 bytes (16 bits)

bankl size2 float *pf;
Certain pointer operation will generate warnings. The warnings can be removed by adding a proper type

cast. The first warning can be disabled by command line option -wx. The other two warnings be disabled
by command line option -wz.

/1 Suspici ous pointer conversion - different sign used
/1l 1nconpatible pointer conversion - different size/type used
/1 Nonportable pointer conversion - not a pointer or address

The supported pointer types are:

a) 8 hit pointer to RAM. The compiler will automatically update the MSB bits (FSROH).

b) 16 bit pointer to RAM. This format is required only when the same pointer has to access locations in
different 256 byte RAM segments.

c) 8 bit pointer to program memory. This pointer can access up to 256 byte of data.

d) 16 bit pointer to program memory. This pointer can access more than 256 bytes of data.

e) 16 bit pointer to RAM or program memory. Bit 15 is used to detect RAM or program memory
access.

2.5 Const Data Support

CCB8E supports constant data stored in program memory. The C keyword 'const' tells the compiler that
these data do not change. Examples:

const char *ps = "Hello world!";
const float ftx[] = { 1.0, 33.34, 1.3e-10 };

t = *ps;
ps = "";
fx = ftx[i];

25

CCB8E C Compiler B Knudsen Data

The implementation of constant data supports the following features:

« both 8 and 16 bit pointers to const data in the same application

» the size of single const pointers can be chosen automatically

e const pointers can access both RAM and program memory

» the compiler will not put all constant data in a single table, but rather make smaller tables if this
saves code space

» duplicate strings and other data are automatically merged to save space

Recommendations:

It is recommended to use small data tables and structures. This allows the compiler to merge equal data
items and build optimal blocks of constant data.

Limitations:

1) The compiler will not initialize RAM variables on startup
2) Data items of 16 bits or more in structures with more than 256 byte of data must be aligned

Data of size 16 bits or more

The compiler allows access of 8, 16, 24 and 32 bit data, including fixed and floating point formats. When
using arrays or structures with more than 256 bytes of data, single data items have to be aligned.
Alignment means that there should not be any remainder when dividing the offset by the size of the data
item. This is only a problem when defining structures containing data of different sizes.

const long tI[5]
const uns24 th[]
const int32 ti[]

{ 10000, -10000, O, 30000, -1 };
{ 1000000, OxFFFFFF, 9000000 };
{ 1000000000, Ox7FFFFFFF

- 900000000 };
const fixed8 8 tf[] ={ -1.1, 200.25, -100.25 };
const float tp[] ={ -1.1, 200.25, 23e20 };
const double td[] = { -1.1, 200.25, 23e-30};
const floatl6 ts[] ={ -1.1, 200.25, 23e-30};

i
d

ti[i]; [// reading a long integer
td[x]; // reading a double float constant

Locating Const Data

The compiler will normally insert ‘const' data at the end of the user code (high address). The following
pragma statement will allow the 'const' data to be inserted between two user functions, or at a specific
address (if using #pragma origin first):

#pragma i nsert Const

Merging data
The compiler will automatically merge equal strings and sub-strings, and also other data items. Using

small tables will increase the chance of finding data items that can be merged. Note that data containing
initialized addresses (ROM and RAM) are not merged. Examples:

1. The string "world!" is identical to the last part of the string "Hello world!". It is therefore not required
to use additional storage for the first string. The compiler handles the address calculations so that
merged (or overlapping) strings are handled fully automatically. Note that the string termination "\0'
also has to be equal, otherwise merging is not possible. For example, the string "world" cannot be
merged with the above strings.

26

CCB8E C Compiler B Knudsen Data

2. Merging applies to all kinds of data. Data is compared byte by byte. This allows the first two of the

following tables to be merged with the last one.

const char al[]
const char a2?[]
const char a3[]

{ 10, 20, 30 };
"ab";
{5, 10, 20, 30, 'a', 'b', 0 };

Examples
A table of pointers to strings:

const struct {
const char *s;

}otb[] ={
"Hell o worl d",
"Monday",
"w'orld" /1 automatically nmerged with first string
I
p =tb[i].s; [/ const char *p; char i;
t = *p++; /1l char t;
t = p[x]; /1 char x;

Note that ‘const struct' is required to put the pointer array in program memory. Using ‘const char *tx[];'
means that the strings reside in program memory, but the table 'tx[]' resides in RAM.

String parameters:

myfunc(“Hello”); [// void nyfunc(const char *str);
myfunc(& ab[i]); // char tab[20]; // string in RAM
myfunc(ctab); // const char ctab[] = “A string”;

Interrupt Vector Tables

The enhanced PIC18 core devices supports interrupt vector tables. These can be defined as follows.
Please refer to Chapter 6.2 Interrupts on page 60 for more details.

const IntVector1l6 intVectorTablel[] = {
default _| SR /1 0 Software |nterrupt
defaul t _|I SR, /1 1 HLVD
default | SR /1 2 OSF
default | SR /1 3 CSW
nvm | SR, /1 4 NVM
default | SR, /1 5 SCAN
crc_| SR, /1 6 CRC
/..
0, /1 unsigned integer val ues all owed
default | SR /1 81 CLCA

}s

Const data stored in dedicated functions

The data type DatalnW allows integer data that fits within an instruction word (16 bit) to be stored in
const data tables that are mapped to dedicated functions containing data elements only (no code or
return). Note that it is not possible to use DatalnW outside the const table.

27

CCB8E C Compiler B Knudsen Data

It is possible to read and assign the address of the const table, but without any operations. All access of
data within this type of tables must be done by an application access function. It is not possible to use a
table index read (dataTable[i]), fixed offset (dataTable[5]) or pointers.

const DatalnWdataTable[] = {

1234,
3456,
OxFFFF,
Ol
1
uns8 get Data(unsl6 ix)
{
TBLPTR = (uns24) dataTable; // get the table start address
ix *= 2;
TBLPTR += i x;
t abl eReadl nc(); /1 read LSB and increnent TBLPTR
return TABLAT,;
}
uns16 ix16:

uns8 x = getData(ix16);

t abl eReadl nc() ; /1 read MSB and increment TBLPTR
uns8 y = TABLAT,;

28

CCB8E C Compiler

B Knudsen Data

3 SYNTAX

3.1 Statements

C statements are separated by semicolons and surrounded by block delimiters:

{ <statenent>; .. <statenent>; }

The typical statements are:
/1 if, while, for, do, switch, break, continue,
/1 return, goto, <assignnment>, <function call>
while (1) {

k = 3;

X
if (PORTA == 0) {
for (i =0; i < 10; i++) {

pin_1 = 0;
do {
a = sanple();
a=rr(a);
s += a;
}
while (s < 200);
}
reg -= 1,
}
if (PORTA == 4)
return 5;
else if (count == 3)
goto X;
i f (PORTB. 3)
br eak;

}

if statement
if (<condition>)
<st at enent >;
else if (<condition>)
<st at enent >;
el se
<st at enent >;

The else if and else parts are optional.

while statement

whi I e (<condition>)
<st at enent >;

while (1) { .. } /1 infinite | oop

for statement
for (<initialization> <condition>; <increnent>)
<st at enent >;

initialization: legal assignment or empty

29

CCB8E C Compiler B Knudsen Data

condition: legal condition or empty
increment: legal increment or assignment or empty

for (v =0; v <10; v++) { .. }
for (; v <10; v++) { .. }
for (v =0; ; v--) {

)
for (i=0; i<5 a.b[x]+=2) { .. }

do statement

do
<st at enent >;
whil e (<condition>);

switch statement

The switch statement supports variables up to 32 bits. The generated code is more compact and executes
faster than the equivalent 'if - else if' chain.

switch (<variable>) {
case <constant 1>:
<statenent>;, .. <statenent>;
br eak;
case <const ant 2>:
<statement>; .. <statenent>;
br eak;

defaul t:
<statenment>; .. <statenent>;
br eak;

}

<variable>: all 8-32 bit integer variables including W
break: optional
default: optional, can be put in the middle of the switch statement

switch (token) {
case 2:
i += 2;
br eak;

case 9:
case 1:
defaul t:
i f (PORTA == 0x22)
br eak;

case 'P':
pinl =0; i -= 2
br eak;

break statement

The “break;” statement is used inside loop statements (for, while, do) to terminate the loop. It is also used
in switch statements.

30

CCB8E C Compiler B Knudsen Data

while (1) {
|f (var == 5)
br eak;
}

continue statement
The “continue;’ statement is used inside loop statements (for, while, do) to force the next iteration of the
loop to be executed, skipping any code in between. In while and do-while loops, the loop condition is
executed next. In for loops, the increment is processed before the loop condition.

for (i =0; i <10; i++) {

it (i == 7)
conti nue;

}

return statement
return <expression>; /* exits the current function */

return; /* no return val ue */
return i+1l; /* return value */

goto statement
got o <l abel >;

Jumps to a location, forward or backward.
goto XYZ;
XYZ:

3.2 Assignment and Conditions
Basic assignment examples:

i = x - 100;

y =AY Iy =y""A;

W | = 0x10; /1 W= W] 0x10;

a=b=c+ 1, // multiple assignment

/! operations: + - & | N * [% << >>

flag = 1; // set bit variable

i++ [*or*/ ++i; [*or*/ i
i--; [*or*/ --i; [*or*/ i

Special syntax examples

#define nx 'a
if (!nmx)

31

CCB8E C Compiler B Knudsen Data

W= W- 3; // ADDLW 256-3

b =1fx() - 3;

/1l Post- and pre-increnenting of pointers
char *cp

t = *--cp;

t |= *++cp

*cp-- = t;

t = *cp++ + 10;

/1l pre-increnmenting of variables
t = ++b | 3;

sum --b, 10);

t = tab[--b];

Conditions

[++ | --] <variabl e> <cond-oper> <val ue>
[& condition]
[|] condition]

cond- oper : == = > >= < <=

if (x ==7) ..

if (Carry ==1 && al < a2) ..
if (y >44 || Carry || x!1=2)
if (--index > 0)

if (bx ==1 || ++i < max)

if (sub_1() '= 0)

Bit variables

bit a, b, ¢, d;
char i, j, k;

bit bitfun(void) // bit return type (using Carry bit)
{

return O; /1 Clear Carry, return
return 1; /1l Set Carry, return
nop() ;
return Carry; // return
return b; /1 Carry=b; return
return li;
return b & PORTA. 3;

}

b = bitfun2(bitfun(), 1);
if (bitfun())

if ('bitfun()) ..

if (bitfun() == 0)
I'charfun();

charfun() > 0;
Ibitfun();

Carry = bitfun();

b & bitfun();

T OTOT
I

32

CCB8E C Compiler B Knudsen Data

if (bitfun() == b) ..
if (bitfun() == PORTA 1)

i += b; // conditional increment

i -= b; /! conditional decrenent

i = k+Carry;

i = k-Carry;

b =1!b; // Toggle bit (or b=b==0;)
b =1c; // assign inverted bit

PORTA. 0 = ! Carry;
a &= PORTA. 0;
PORTA. 1 | = a;
PORTA. 2 &= a;

/ assign condition using 8 bit char variables
Li;

'w

j == :

k 1= 0;

/
b
b
b
b
b i > 0;

/1 assign bit conditions
b =c&d; //also &&, |, ||, +, ~, == != < > >z <=

/1 conditions using bit variables
if (b==c) .. /] also != > < >= <=

// initialized local bit variables
bit bx = ¢cx == "+";
bit by = fx() != OxFF;

Multiplication, division and modulo
mul tiplication : alé = bl6é * c16; // 16 * 16 bit

A general multiplication algorithm is implemented, allowing most combinations of variable sizes.
Including a math library allows library calls to be generated instead of inline code. The algorithm
makes shortcuts when possible, for instance when multiplying by 2. This is treated as a left shift.

di vi si on : alé bl6 / c8; /1 16 /| 8 bit

nodul o : a32 b32 %cl6; // 32 %16 bit

The division algorithm also allows most combinations of variable sizes. Shortcuts are made when
dividing by 2 (or 2*2*..). These are treated as right shifts.

Precedence of C operators

H ghest: ()

++ --

* %

+ -

<< >>

< <= > >=

|
Lowest : = 4= -= *= |[= etc.

33

CCB8E C Compiler

B Knudsen Data

Mixed variable sizes are allowed

a32
alé

(uns32) b24 * c8; [//
alé + bS§;

I

24 * 8 bit,
16 + 8 bit,

result 32 bit
result 16 bit

Most combinations of variables are allowed; the compiler performs sign extension as required. Multiple
operations in the same expression are allowed when using 8 bit variables.
a8 = b8 + ¢c8 + d8 + 10;

3.3 Constants

X = 34; [* deciml */

X = 0x22; /* hexadeci mal */

X = "A; /* ASCI| */

X = 0b010101; /* binary */

X = 0x1234 / 256; [* 0x12 : MSB */

X = 0x1234 % 256; [* 0x34 : LSB */

X = 33 % 4; [* 1 */

x = OxF & OxF3; /* 3 */

X = 0x2 | 0x8; /* 10 */

X = 0x2 ™ OxF; /* 0bl1101 */

X = 0b10 << 2; [* 8 */

X =rl1l+(3* 8- 2); [* 22 */
X =rl+ (3 + 99 + 67 - 2); [* 167 */
x = ((OxF & OxF3) + 1) * 4; [* 16 */

Please note that parentheses are required in some cases.

Constant expressions

The size of integers is by default 8 bits for this compiler (other C compilers typically use 16 or 32 bits
depending on the CPU capabilities). An error is printed if the constant expression loses significant bits

because of value range limitations.

char a;
a

SR G Y

(10 * 100) / 256;
(10L * 100) / 256;
((uns16) 10 * 100)
(uns16) (10 * 100)
(10 * 200) / 256;

/1 no error,

/1 an error is printed
/1 no error

/ 256; // no error

/ 256; // error again

Adding an L means conversion to long (16 bit).

The command line option -cu forces 32 bit evaluation of constants so that no significant bits are lost.

Some new built in types can also be used:

TYPE

int8 :
i nt 16:
i nt 24:
i nt 32:
uns8 :
uns16:
uns24:
uns32:

8
16
24
32

16
24
32

bi t
bi t
bi t
bi t
bi t
bi t
bi t
bi t

si gned
si gned
si gned
si gned
unsi gned
unsi gned
unsi gned
unsi gned

Sl ZE

AP WONEFEPRAWNPE

M N

-128

- 32768

- 8388608

- 2147483648
0

0
0
0

200 is a long int

MAX

127

32767
8388607
2147483647
255

65535
16777215
4294967295

34

CCB8E C Compiler B Knudsen Data

The constant type is by default the shortest signed integer. Adding a U behind a constant means that it is
treated as unsigned. Note that constants above Ox7FFFFFFF are unsigned by default (with or without a U
behind).

Enumeration

An enumeration is a set of named integer constants. It can often replace a number of #define statements.
The numbering starts with 0, but this can be changed:

enum { Al, A2, A3, A4 };

typedef enum{ alfa = 8, beta, zeta = -4, eps, } ENI;

ENL1 nn;

enum con { Read_A, Read B };

enum con mm

mm = Read_A;

nn eps;

3.4 Functions

Function definitions can appear as follows:
voi d subroutine2(char p) { /* C statenents */}
bit functionl(void) { }
l ong function2(char W { }
void mai n(void) { }

Function calls:
subroutinel();
subrouti ne2(24);
bitX = functionl();
X function2(W;

y fx1(fx3(x));

The compiler needs to know the definition of a function before it is called to enable type checking. A
prototype is a function definition without statements. Prototypes are useful when the function is called
before it is defined. The parameter name is optional in prototypes:

char function3(char);
voi d subroutinel(void);

Function return values

Functions can return values up to 4 bytes wide. Return values can be assigned to a variable or discarded.
Handling and using return values is automated by the compiler.

The least significant byte is always placed in W. Signed variables and variables larger than 8 bits also use
temporary variables on the computed stack.

A function can return any value type. The W register is used for an 8 bit return value if possible. The
Carry flag is used for bit return values. The compiler will automatically allocate a temporary variable for
other return types. A function with no return value is of type void.

Parameters in function calls

There is no fixed limit on the number of parameters allowed in function calls. Space for parameters is
allocated in the same way as local variables, which allows efficient reuse. The bit type is also allowed.
Note that if W is used, this has to be the LAST parameter.

char func(char a, unsl6 b, bit ob, char W;

35

CCB8E C Compiler B Knudsen Data

Internal functions
The internal functions provide direct access to certain inline code:

btsc(Carry); // void btsc(char); - BTFSC f, b

bt ss(bit2); /1 void btss(char); - BTFSS f, b

clrwdt (); /1 void clrwdt(void); - CLRWADT

cl ear RAM) ; /1 void clearRAMvoid); clears all RAM

f = decsz(f); // char decsz(char); - DECFSZ f,d

W= incsz(f); // char incsz(char); - INCFSZ f,d

nop(); /1 void nop(void); - NOP

nop2(); /1 void nop2(void); - branch (2 cycles)
retint(); /1 void retint(void); - RETFIE

W= rl (f); /1 char rl(char); - RLF f,d

f =rr(f); /1 char rr(char); - RRF f,d

sl eep(); /1 void sleep(void); - SLEEP

skip(i); /1 void skip(char); - conputed goto (single word)
skipL(i); /1 void skipL(char); - conputed goto (double word)
ski pMi); /1l void skipMchar); - conputed goto (single/double)
f = swap(f); // char swap(char); - SWAPF f,d

W= addWFC(f);// char addWrC(char); - ADDWC f,d

f = subFWB(f);// char subFWB(char); - SUBFWB f,d

f = subWFB(f);// char subWrB(char); - SUBWB f,d

W= rlnc(f); [/ char rlnc(char); - RLNCF f,d

f =rrnc(f); [// char rrnc(char); - RRNCF f,d

f = decsnz(f);// char decsnz(char); - DCFSNz f,d

W= incsnz(f);// char incsnz(char); - INFSNZ f,d

f = negate(f);// char negate(char); - NEGF f

W = decadj (W;// char decadj(char); - DAW

multiply(f); // void multiply(char); - MJLW f

mul tiply(50); // void multiply(char); - MILLWIiteral

skipl fEQf); [/ void skiplfEQchar); - CPFSEQ f

skipl fLT(f); [/ void skiplfLT(char); - CPFSLT f

skipl fGr(f); [/ void skiplfGI(char); - CPFSGT f

ski pl fZero(f);// void skiplfZero(char); - TSTFSZ f
pushStack(); // void pushStack(void); - PUSH

popSt ack() ; /! void popStack(void); - POP

softReset(); // void softReset(void); - RESET

t abl eRead(); /1 void tabl eRead(void); - TBLRD *

t abl eReadl nc(); /1 void tabl eReadl nc(void); - TBLRD *+
t abl eReadDec() ; /1 void tabl eReadDec(void); - TBLRD *-
t abl eReadPrelnc(); // void tabl eReadPrel nc(void); - TBLRD +*
tableWite(); /1 void tableWite(void); - TBLWI *
tabl eWitel nc(); /1 void tableWitelnc(void); - TBLWI *+
tabl eWiteDec(); /1 void tableWiteDec(void); - TBLWI *-
tableWitePrelnc();// void tableWitePrelnc(void); - TBLW +*

Additional internal function available for the enhanced PIC18 core:

ski pX(i); /1 void skipX(char); conputed goto (1/2/3 word)

The internal rotate functions (rl, rr) are also available for the larger variable sizes:

rotation
rotation

alé
a32

ri(ale);
rr(a32);

/1 16 bit
/1 32 bit

| eft
right

36

CCB8E C Compiler B Knudsen Data

Note that skip(i) requires that all instructions in the table are single words (single word increments).
Similarly, skipL(i) requires that all instructions in the table are double words (GOTO,CALL,etc.), and the
skipL argument skips double words on each increment. The compiler will adapt the optimization to this
need, and print an error message if not possible. The skipM(i) allows both double and single word
instructions in the table, using single word increments when calculating the offset. The skipX(i) allows
triple, double and single word instructions in the table, using single word increments for the offset.

The inline function nop2() is implemented by a BRANCH to the next address. Thus, nop2() can replace
two nop() to get more compact code. The main use of nop() and nop2() is to design exact delays in timing
critical parts of the application.

3.5 Type Cast

Constants and variables of different types can be mixed in expressions. The compiler converts them
automatically to the same type according to the stated rules. For example, the expression:

a=>b + c;

consists of 2 separate operations. The first is the plus operation and the second is the assignment. The
type conversion rules are first applied to b+c. The result of the plus operation and a are treated last.

The CC8E compiler uses 8 bit int size and contains many data types (integers, fixed and floating point).
The type cast rules have been set up to provide best possible compatibility with standard C compilers
(which typically uses 16 or 32 bit int size).

The type conversion rules implemented are:

if one operand is double -> the other is converted to double

if one operand is float -> the other is converted to float

if one operand is 32 bit -> the other is converted to 32 bit

if one operand is 24 bit -> the other is converted to 24 bit

if one operand is long -> the other is converted to long

if one operand is unsigned -> the other is converted to unsigned

oupwdE

NOTES:

e Thesign is extended before the operand is converted to unsigned.
e Assignment is also an operation.

e The char type is unsigned

e Constants are SIGNED, except if U is added.

» The bit type is converted to unsigned char.

» The fixed point types are handled as subtypes of float.

Type conversion in C is difficult. The compiler may generate a warning if a type cast is required to make
the intention clear. Remember that assignment (=) is a separate operation. The separate operations are
marked (1:), (2:) and (3:) in the following examples.

unsl1l6 ale6;
uns8 b8, c8;
int8 i8, j8;

al6 = b8 *c8; /* (1:) In this case both b8 and c8 are 8 bit unsigned, so the type of the multiplication is 8
bit unsigned. (2:) The result is then assigned to a 16 bit unsigned variable, al6. Converting the 8 bit
unsigned result to 16 bit unsigned means clearing the most significant bits of al6. The compiler generates
a warning because significant bits of the multiplication are lost due to the type conversion rules. */

al6 = (unsl6) (b8 * c8); /* (1:) Adding parentheses just isolates the multiplication and the multiplication
result is still 8 bit unsigned. (2:) The (uns16) type cast is not needed because this type cast is done

37

CCB8E C Compiler B Knudsen Data

automatically before the assignment. The compiler generates a warning because significant bits of the
multiplication are lost due to the type conversion rules. */

al6 = (unsl16) b8 * c8; /* (1:) Converting one of the arguments to 16 bit unsigned BEFORE the
multiplication is the right syntax to get a 16 bit result. (2:) The result and the destination a16 now have
the same type for the assignment and no type conversion is needed. */

al6 = (uns8) (b8 * ¢8); /* (1:) The multiplication result is 8 bit unsigned. (2:) The (uns8) type cast tells
the compiler that the result should be 8 bit unsigned, and no warning is generated even though it looks
like significant bits of the multiplication are lost. */

al6 = b8 *200; /* (1:) Constant 200 is a 16 bit signed constant (note that 200U is an 8 bit unsigned
constant, and that 127 is the largest 8 bit signed constant). Argument b8 is therefore automatically
converted to 16 bit. The constant is then converted to unsigned and the result is 16 bit unsigned. (2:) The
result and the destination a16 now have the same type for the assignment and no type conversion is
needed. */

al6 = (int16) i8 * j8; /* (1:) Both arguments are converted to 16 bit signed and the result is 16 bit signed.
(2:) The result is converted to unsigned before the assignment, but this does not mean any real change
when the size is the same (example: -1 and OxFFFF have the same 16 bit representation). */

al6 = (unsl16) (uns8)i8 * (uns8)j8; /* (1:) To get an 8*8 bit unsigned multiplication it is necessary to cast
both arguments to unsigned before extending the size to 16 bit unsigned. Otherwise the sign bit will be
extended and the multiplication will need more code and cycles to execute. (2:) The result and the
destination al6 now have the same type for the assignment and no type conversion is needed. */

al6 = ((uns16) b8 * ¢8) / 3; /* (1:) Converting one of the arguments to 16 bit unsigned before the
multiplication gives a 16 bit result. (2:) Division is the next operation and is using the 16 bit unsigned
multiplication result. Constant 3 is 8 bit signed, and is then automatically converted to 16 bit signed and
further to 16 bit unsigned. The result of the division is 16 bit unsigned. (3:) The division result and the
destination a16 now have the same type for the assignment and no type conversion is needed. */

3.6 Accessing Parts of a Variable
Each bit in a variable can be accessed directly:

uns32 a;

a.7 = 1; /] set bit 7 of variable a to 1

if (a.31 == 0) /1l test bit 31 of variable a
t[i].4 = 0; /1l bit 4 of the i'th el ement

Bit 0: least significant bit

Bit 7: nost significant bit of a 8 bit variable
Bit 15: nost significant bit of a 16 bit variable
Bit 23: nost significant bit of a 24 bit variable
Bit 31: nost significant bit of a 32 bit variable

Also, parts of a variable can be accessed directly:

unslé a;

uns32 b;

a.low8 = 100; // set the least significant 8 bits
a = b.highl6; // load the nmost significant 16 bits

lowd : least significant byte
hi gh8 : nobst significant byte

38

CCB8E C Compiler B Knudsen Data

m d8 : second byte

m dL8 : second byte

mdH8 : third byte

lowl6 : least significant 16 bit
mdl6 : niddle 16 bit

hi ghl6: nost significant 16 bit
low24 : least significant 24 bit
hi gh24: nost significant 24 bit

The table shows which bits are accessed depending on the variable size in bytes (1,2,3,4) and the sub-
index used. The * indicates normal use of the sub-index:

1 2 3 4

| ows 0-7 * 0-7 * 0-7 * 0-7

hi gh8 0-7 * 8-15 * 16-23 * 24-31
nm d8 0-7 8-15 * 8-15 8-15
m dL8 0-7 8-15 8-15 * 8-15
m dH8 0-7 8-15 16- 23 * 16-23
| owl6 0-7 0-15 * 0-15 * 0-15
m dl6 0-7 0-15 8-23 * 8-23
hi ghl16 0-7 0-15 * 8-23 * 16-31
| ow24 0-7 0-15 0-23 * 0-23
hi gh24 0-7 0-15 0-23 * 8-31

3.7 C Extensions
CCB8E adds some extensions to the standard C syntax:

1. The bit variable type
2. The interrupt function type

3. Local variables can be declared between statements as in C++. Standard C requires local variables to
be defined in the beginning of a block.

4. Binary constants : 0bxxxxxx or bin(Xxxxxx)
The individual bits can be separated by the ".":
0b0100
Ob. 0. 000. 1. 01. 00000
bi n(0100)
bi n(0001. 0100)

5. Preprocessor statements can be put into macros. Such preprocessor statements are not extended to
multiple lines. The inserted preprocessor statements are evaluated when the macro is expanded, and not
when it is defined.

#defi ne MAX \

{ \
a = 0; \

#if AAA == 0 && BBB == 0 \
b = 0; \

#endi f \

}

6. Several of the type modifiers are not standard in C (bank0..bank15, accessBank, sizel,size2)

39

CCB8E C Compiler B Knudsen Data

More C extensions are allowed by the #pragma statement.

3.8 Predefined Symbols
The basic PICmicro registers are predefined (header files define the rest):

TOSU, TOSH, TOSL,

STKPTR,

PCLATU, PCLATH, PCL,

TBLPTRU, TBLPTRH, TBLPTRL, TBLPTR, TABLAT,

PRODH, PRODL,

| NTCON, | NTCONZ2, | NTCON3,

| NDFO, POSTI NCO, POSTDECO, PREI NCO, PLUSW), FSROH, FSROL, FSRO,
W V\REG

| NDF1, POSTI NC1, POSTDEC1, PREINC1l, PLUSW, FSR1H, FSR1L, FSR1,
BSR, BSRL,

| NDF2, POSTI NC2, POSTDEC2, PREINC2, PLUSW2, FSR2H, FSR2L, FSR2,
STATUS,

Carry, DC, Zero_, Overflow, Negative

The following names are defined as internal functions, and are translated into special instructions or
instruction sequences.

btsc, btss, clearRAM clrwdt, decsz, incsz, nop, nop2, retint, rl,
rr, sleep, skip, skipL, skipM skipX, swap, decsnz, incsnz, addWrC,
SubWrB, subFWB, rlnc, rrnc, negate, decadj, multiply, skiplfEQ

ski pl fLT, skiplfGrI, skiplfZero, pushStack, popStack, softReset,

t abl eRead, tabl eReadl nc, tabl eReadDec, tabl eReadPrelnc, tableWite,
tableWitelnc, tableWiteDec, tableWitePrelnc

Extensions to the standard C keywords

accessBank, bankO, .. bank63, bit, DatalnW fixed8 8, .. fixed24 8,
float16, float24, float32, int8, intl6, int24, int32, interrupt,
I nt Vect or 16, shrBank, sizel, size2, uns8, unsl6, uns24, uns32

Standard C keywords used
auto, break, case, char, const, continue, default, double, enum
extern, do, else, float, for, goto, if, inline, int, long, return,
short, signed, sizeof, static, struct, swtch, typedef, union,
unsi gned, void, while,
define, elif, ifdef, ifndef, include, endif, error, pragma, undef

The remaining standard C keywords are detected and compiled. One is ignored (register), and the rest
cause a warning to be printed (volatile, line).

The sizeof operator

The operator sizeof() gives the size in bytes of the argument. The argument can be a type name, a variable
name, a pointer, a structure name, an array name, a string literal or a constant. Sizeof can also be used in a
preprosessor statement. Examples: sizeof(char) is 1, sizeof(bit) is 0, sizeof(“abc”) is 4, sizeof(int24) is 3.

Function offsetof(struct_type, struct_member)

Function offsetof() returns the offset to a structure member. The first argument must be a struct type, and
the second a structure member. The function can also be used in a preprocessor expression.

40

CCB8E C Compiler B Knudsen Data

typedef struct sStx {
char a;
unsl1l6 b;
St x;
of fsetof (Stx, b);
of fsetof (struct sStx, a);
of fsetof (struct_x, nenber_n.sub2.q[3]);

X X X

Automatically defined macros and symbols

The following symbols are automatically defined when using the CC8E compiler, and can be used in
preprocessor macros:

__CC8E__ := Integer version nunber: 1000 neans version 1.0
1102 nmeans version 1.1B
* first 2 digits : nmain version
* last 2 digits : mnor release (01="A, 02="B, etc.)

__CoreSet __ := 1800 : original PICl8 devices
1810 : enhanced PI C18 devi ces

__EnhancedCorel8 := 1 : when the Enhanced PICl8 is sel ected

Macros __ FILE__ _and __ LINE_

Macro __ FILE__is replaced by the name (string literal) of the current source file. Macro __LINE__is
replaced by the current line number (decimal constant) of the source file being compiled.

Macros _ DATE__and _ TIME__
Macros for date and time are defined when compilation starts.

Macr o For mat Exanpl e
_TIME__ HOUR MN: SEC "23:59: 59"
__DATE__ MONTH DAY YEAR "Jan 1 2005"

__DATE2__ DAY MONTH YEAR " 1 Jan 2005"

3.9 Upward Compatibility

The aim is to provide best possible upward compatibility from version to version. Sometimes the
generated code is improved. If the application programs contain critical timing parts (depending on an
exact instruction count), then these parts should be verified again, for example by using the MSDOS
program fc (file compare) on the generated assembly files.

41

CCB8E C Compiler B Knudsen Data

4 PREPROCESSOR DIRECTIVES

The preprocessor recognizes the following keywords:

#define, #undef, #include

#if, #ifdef, #ifndef, #elif, #else, #endif
#error, #warning, #nmessage

#pragma

A preprocessor line can be extended by putting a \' at the end of the line. This requires that there are no
space characters after the '\'.

#define
#define counter vl
#define MAX 145
#define echo(x) v2 = X
#define mx() echo(1) /* nested macro */

Note that all #define's are global, even if they are put inside a function.

Preprocessor directives can be put into the #define statement.

Macro concatenation
The concatenation operator ## allows tokens to be merged while expanding macros. Examples:

#def i ne CONCAT(NAME) NAMVE ## _conmand()

CONCAT(qui t) => qui t _conmand()

CONCAT() => _conmmand()
CONCAT(dumy(); hel p); => dunmy(); hel p_command()
#def i ne CONCAT2(N1, N2) N1 ## _comm ## N2()

CONCAT2(hel p, and) => hel p_command()

#defi ne CONCAT3(NBR) Ox ## NBR

CONCAT3(0f); => 0OxOf

#defi ne CONCAT4(TKN) TKN ## =

CONCAT4(+) => +=

#define nrg(s) s ## _nmsg(s)
#define xnrg(s) nrg(s)

#define foo al t

nT g(f 00) => foo _nsg(alt)
xnr g(foo0) => alt_nsg(alt)
#define | LLEGALL() ## _conmmand

#define | LLEGAL2() _conmand ##

Macro stringification
The stringification operator # allows a macro argument to be converted into a string constant. Examples:

#define STRI NG 1(ARG #ARG
STRI NG 1(hel p) => "hel p"

42

CCB8E C Compiler B Knudsen Data

STRING 1(p="foo\n";) => "p=\"foo\\n\";"
#define STRING 2(Al, A2) #Al " " #A2
STRI NG 2(x, y) => "x" " " "y" (equivalent to "x y")

#define str(s) #s
#define xstr(s) str(s)

#def i ne foo 4
str(foo) => "foo"
xstr(foo) => "4"

#defi ne WARN | F(EXP) \
do { if (EXP) \
war n("Warning: " #EXP "\n"); } \

while (0)

WARN | F (x==0); => do { if (x==0)
warn("Warning: " "x==0" "\n"); } while (0);
#include

#i ncl ude "test.h"
#i ncl ude <test.h>

#include's can be nested. When using #include "test.h" the current directory is first searched. If the file is
not found there, then the library directories are searched, in the same order as supplied in the command
line option list (-1<dir>). The current directory is skipped when using #include <test.h>.

Macros can be used in #include files. The following examples show the possibilities. Note that this is not
standard C.

#i nclude "filel" ".h"
#define MACL "c:\project\"
#i ncl ude MACL "file2.h"
#defi ne MAC2 MAC1 ".h"

#i ncl ude MAC2

#defi ne MAC3 <fil e3. h>

#i ncl ude MAC3

Rules for macros in #include:

1. Strings using " can be split, but not strings using <>
2. Only the first partial string can be a macro
3. Nested macros are possible
4. Only one macro at each level is possible
#undef
#define MAX 145

#'undef MAX /* renoves definition of MAX */

#undef does the opposite of #define. The #undef statement will not produce any error message if the
symbol is not defined.

43

CCB8E C Compiler B Knudsen Data

#if
#i f defined ALFA && ALFA ==

/* éiatenEnts conpiled if ALFA is equal to 1 */
/* conditional conpilation may be nested */
#endi f

An arbitrary complex constant expression can be supplied. The expression is evaluated the same way as a
normal C conditional statement is processed. However, every constant is converted to a 32 bit signed
constant first.

1) macros are autonatically expanded
2) defined(SYMBOL) and defined SYMBOL are replaced by 1 if the synbol
i s defined, otherw se O.
3) legal constants : 1234 -1 'a' "\\'
4) legal operations : + - * [/ %>> <<
::!:<<=>>=||&&

b~ 0

#ifdef
#i f def SYMBOL

/* Statenents conpiled i f SYMBOL is defined.
Condi tional conpilation can be nested. SYMBOL
shoul d not be a variable or a function nane. */
#endi f

#ifndef

#i f ndef SYMBOL
/* statenents conpiled if SYMBOL is not defined */
#endi f

#elif
#i fdef AX
#elif defined BX || defined CX
/* statenents conpiled if AX is not
defined, and BX or CX is defined */
#endi f
#else

#i f def SYMBOL
#el se

/* statenents conpiled if SYMBOL is not defined */
#endi f

#endif
#i f def SYMBOL

#endi f /* end of conditional statenents */

44

CCB8E C Compiler B Knudsen Data

#error
#error This is a custom defined error nessage

The compiler generates an error message using the text found behind #error.

#warning

#warning This is a warning

The following output is produced. Note that this directive is not standard C.
Warning test.c 7: This is a warning

#message
#message This is nessage 1

The following output is produced. Note that this directive is not standard C.
Message: This is nmessage 1

4.1 The pragma Statement
The pragma statement is used for processor specific implementations.

#pragma accessGPR <n>

The number of RAM bytes in the access bank can be defined. The default setting is 128 (0x80). The start
address of the SFR regeisters in the access bank at the end of the data space will also change accordingly.
This statement is normally found in the chip header files.

#pragm accessGPR 0x60 // access RAMfrom O to Ox5F

#pragma alignLsbOrigin <a> [to]

This pragma statement allows the origin to be aligned. The compiler will check if the least significant
byte of the origin address is equal to <a>, or alternatively within the range <a> to . If this is not true,
the origin is incremented until the condition becomes true. Both <a> and may range from -254 to
254, and should be even numbers.

#pragma alignLsbOrigin O

#pragma alignLsbOrigin 6 to 100

#pragma al i gnLsbOrigin 0 to 190 /Il [-254 .. 254]
#pragma al i gnLsbOrigin -100 to 10

Such alignment is useful to make sure that a computed goto does not cross a 256 byte address boundary.
More details are found in Section Origin alignment on page 105 in Chapter 9.1 Computed Goto.

#pragma asm2var 1
Enable equ to variable transformation. This is defined in Chapter 6.5 Inline Assembly on page 73.

#pragma assert [/] <type> <text field>

Assert statements allow messages to be passed to the simulator, emulator, etc. Refer to Chapter 7.3 Assert
Statements on page 99 for details.

#pragma assume *<pointer> in rambank <n>

The #pragma assume statement tells the compiler that a 8 bit RAM pointer operates in a limited address
range. Refer to Chapter 2.4 Pointers on page 24 for details.
#pragma assume *p in ranbank 3

45

CCB8E C Compiler B Knudsen Data

#pragma bankOrigin <N>

The RAM bank origin is the MSB address of bank 0. The default RAM bank origin is 0. However, it is
possible to set the RAM bank origin to a new position for variables allocated by the compiler.

#pragma bankOrigin <N> // map ram banks, 0->N, 1->N+1,
#pragma bankOrigin /1 map ram banks to actual RAM start

Example: Bank origin 5 is equal to address 0x500 which is the RAM start of some enhanced PIC18 core
devices. Using bank origin 5 (#pragma bankOrigin 5, #pragma bankOrigin, -bo5 or -bo) means that bank
0 variables will be mapped to address 0x560-0x5FF, bank 1 to address 0x600-0x6FF, etc.

The obvious usage is to enable RAM allocation as if RAM started at address 0. Another usage is for
redirecting variable allocation in generic SW modules. Setting a new bank origin is possible for all
devices.

The access bank is not affected by the bank origin setting. RAM allocation using absolute addresses will
not be affected by the bank origin.

#pragma bit <name> @ <N.B or variable[.B]>

Defines the global bit variable <name>. It is useful for assigning a bit variable to a certain address. Only
valid addresses are allowed:

#pragma bit bitxx @ 0x20.7
#pragma bit rx @ FSROH. 1
#pragma bit C bit @Carry

NOTE: If the compiler detects double assignments to the same RAM location, this will cause a warning
to be printed. The warning can be avoided if the second assignment uses the variable name from the first
assignment instead of the address (#pragma bit var2 @ varl).

#pragma cdata]ADDRESS] = <VXS>, .., <VXS>

The cdata statement can store 16 bit data in program memory at fixed addresses. Refer to Chapter 6.8 The
cdata Statement on page 94 for details.

#pragm cdat a[ADDRESS] = <VXS>, .., <VXS>
#pragm cdat a[] = <VXS>, .., <VXS>
#pragma cdat a. | DENTI FI ER = <VXS>, .., <VXS>

ADDRESS: 24 bit byte address
VXS : < VALUE | EXPRESSION | STRI NG
VALUE: 0 .. OxFFFF
EXPRESSI ON: any valid C constant expression,
i.e. 0x1000 | (3*1234)
STRING "Valid C String\r\n\0\x24\x8\ xe\ xFF\ xffi\\""

#pragma char <name> @ <constant or variable>

Defines the global variable <name>. The statement is useful for assigning a variable to a certain address.
Only valid addresses are allowed:

#pragma char i @ 0x20
#pragma char PORTX @ PORTC

46

CCB8E C Compiler B Knudsen Data

NOTE: If the compiler detects double assignments to the same RAM location, this will cause a warning
to be printed. The warning can be avoided if the second assignment uses the variable name from the first
assignment instead of the address (#pragma char var2 @ varl).

#pragma chip [=] <device>

Defines the chip type. This allows the compiler to select the right boundaries for code and memory size,
variable names, etc. Note that the chip type can also be defined as a command line option.

#pragma chi p Pl Cl8C242

This statement has to precede any normal C statements, but some preprocessor statements, like #if and
#define, can be compiled first.

The supported devices are defined in a PICmicro header file (e.g. “18C242.h"). It is also possible to make
new header files. Refer to file ‘chip.txt’ for details.

#pragma computedGoto [=] <0,1>

This statement can be used when constructing complicated computed goto's. Refer to Chapter 9.1
Computed Goto on page 105 for details.

#pragm conputedGoto 1 // start region
#pragm conputedGoto O // end of region

#pragma config <setting or symbol definition>
The pragma config statement supports device configuration definition and setting and 1D register setting.
The compiler supports both direct and symbolic setting of the device configuration. It is NOT allowed to
combine direct and symbolic config settings. Example symbolic config setting:

#pragma config <id> = <state> [, <id> = <state>]

#pragma config OSC = INTIO7 // Internal oscillator

#pragma config FCMEN = ON

#pragma config | ESO = ON

#pragma config PWRT = ON, BOREN = SBORDI S

In order to use symbolic config register setting there must be a symbolic config definition. This is
normally found in the device header file:

#pragma config /<regNr> <val ue> <id> = <state>
#pragma config /1 OxFO OSC = LP // LP oscillator
#pragma config /1 OxF9 OSC = | NTI O7
#pragma config /1 OxBF FCMEN = OFF
#pragma config /1 OxFF FCMEN = ON
Direct config setting is an alternative:
#pragma confi g[<of fset>] = <expressi on>
#pragma config[<of fset>] | = <expression>

#pragma confi g[<of fset>] &= <expressi on>

#pragma config | D <of fset>] = <expression>

47

CCB8E C Compiler B Knudsen Data

#pragma config[0] = 0b.1000.0101 /1l byte at address 0x300000
#pragma config[1l] |= 3 /1 set bit 0,1 (addr 0x300001)
#pragma config[2] & ~OxFO, |= Ox80 // clear bit 4-7, set bit 7

#pragma config[2+1] = OxF | 0x80

Setting ID-locations in the source code:

#pragma config IDf 0] = 0x99 /1 byte at address 0x200000
#pragma config I D 1] = 0x88 /1 byte at address 0x200001
#pragma config I D 2] = 0x03

The CONFIG and ID are specified in BYTES. Refer to Chapter 4.2 PICmicro Configuration on page 52
for more details.

#pragma inlineMath <0,1>
The compiler can be instructed to generate inline integer math code after a math library is included.

#pragma inlineMath 1
a=>b*c; /1 inline integer code is always generated
#pragma inlineMath O

#pragma insertConst

The compiler will normally insert ‘const' data at the end of the user code (high address). The following
pragma statement will allow the ‘const' data to be inserted between two user functions, or at a specific
address (if using #pragma origin first):

#pragma i nsert Const

#pragma interruptSaveCheck <n,w,e>

The compiler will automatically check that vital registers are saved and restored during interrupt when
using original PIC18 core devices. Please refer to Chapter 6.2 Interrupts on page 60 for details (or file
‘int18xxx.h’). The error and warning messages can be removed:

#pragma i nterrupt SaveCheck n // no warning or error

#pragma i nterrupt SaveCheck w // warning only
#pragma i nterrupt SaveCheck e // error and warning (default)

Note that the compiler will not check register saving on the enhanced PIC18 core because of the hardware
context saving of these devices.

#pragma intSRC_=<ID>,<vector_nr>[,<comment>]

This pragma statement is normally found in the device header file. It is used to define individual interrupt
sources in an interupt vector table supported by enhanced PIC18 devices:

#pragma i nt SRC =HLVD, 1
#pragma i nt SRC_=CSW 3, O ock*Swi t ch* | nt er r upt

Option -cgi will use this information when generating the interrupt vector table.

#pragma library <0/1>

CCB8E will automatically delete unused (library) functions.

#pragma library 1
/1 functions defined here are deleted if unused

48

CCB8E C Compiler B Knudsen Data

/1 applies to prototypes and function definitions
#pragma library O

#pragma mainStack <minVarSize> @ <lowestStartAddr>

This statement defines a main stack for local variables, parameters and temporary variables. The main
stack is not an additional stack, but tells the compiler where the main stack is located (which bank). The
main stack can cross bank boundaries if necessary. Only variables above or equal to <minVarSize> will
automatically be put in the main stack. The <lowestStartAddr> is the lowest possible start address for the
main stack (the stack grows upwards).

#pragm mai nStack 3 @O0x110

Using this pragma means that local variables, parameters and temporary variables of size 3 bytes and
larger (including tables and structures) will be stored in a single stack allocated no lower than address
0x110. Smaller variables and variables with a bank modifier will be stored according to the default/other
rules. Size 0 means all variables including bit variables.

Note that #pragma rambank is ignored for variables stored in the main stack. Addresses ranging from
0x100 to Ox1FF are equivalent to the bankl type modifier, although the actual bank will be different after
stack allocation for some variables if the main stack crosses a bank boundary.

#pragma minorStack <maxVarSize> @ <lowestStartAddr>

This statement defines a minor stack for local variables, parameters and temporary variables. One reason
for defining a minor stack is that it may be efficient to use the access bank or a specific bank for local
variables up to a certain size. Only variables below or equal to <maxVarSize> will automatically be put
in the minor stack. The <lowestStartAddr> is the lowest possible start address for the minor stack (the
stack grows upwards).

#pragma nmnor Stack 2 @ 0x10

In this case, local variables, parameters and temporary variables up to 2 bytes will be put in the access
bank from address 0x10 and upward. Larger variables and variables with a bank modifier will be stored
according to the default/other rules. Size 0 means bit variables only. This pragma can be used in
combination with the main stack. The variable size defined by the minor stack has priority over the main
stack.

#pragma optimize [=] [N:] <0,1>

This statement enables optimization to be switched ON or OFF in a local region. A specific type of
optimization can also be switched on or off. The default setting is on.

Function

redirect goto to goto

remove superfluous gotos

replace goto by skip instructions

remove instructions that affect the zero-flag only.
replace INCF and DECF by INCFSZ and DECFSZ
remove superfluous updating of PAO and PA1
remove other superfluous instructions

remove superfluous loading of W

9. to be defined

10. inserts TSTFSZ, CPFSEQ

11. inserts branch

©®NoOUR~wWNREZ

Examples:

49

CCB8E C Compiler B Knudsen Data

/* ALL of f */
/* ALL on */
1 /* type 2 on */
0 /* type 1 off */

#pragma optin ze
#pragma optimn ze
#pragma optimn ze
#pragma optin ze

RNRO

/* conbinations are al so possible */
#pragma optimze 3:0, 4:0, 5:1
#pragma optimze 1, 1:0, 2:0, 3:0

NOTE: The command line option -u will switch optimization off globally, which means that all settings
in the source code are ignored.

#pragma origin [=] <expression>
Valid byte address region : 0x0000 - <upper device byte code address>

Defines the byte address of the following code. The current active location cannot be moved backwards,
even if there is no code in that area. Origin cannot be changed inside a function.

#pragma origin 8 // high priority interrupt start address
#pragma origin 0x700 + 2
#pragma origin SECTI ON(APPSEC) // relocatable asm (option —rsc)

#pragma rambank [=] <-,0,1,2,..,15>
- => access bank: 0x000 - OxO7F

0 => bank O: 0x080 — OxOFF
1 => bank 1: 0x100 — Ox1FF
2 => bank 2: 0x200 — Ox2FF
15 => bank 15: O0XFOO — OXF7F

#pragma rambank defines the region where the compiler will allocate variable space. The compiler gives
an error message when all locations in the current bank are allocated.

RAM banks are only valid for some of the devices. Non-existing banks for the other devices are mapped
into bank 0.

#pragma rambase [=] <n>

Defines the start address when declaring global variables. The use of rambank and rambase are very
similar. The address has to be within the RAM space of the chip used. NOTE that the start address is not
valid for local variables, but rambase can be used to select a specific RAM-bank.

#pragma resetVector <n>

Some chips have an unusual startup vector location. The reset-vector then has to be specified. This
statement is normally NOT required, because the compiler normally uses the default location, which is
the first location. It is possible to locate main() in any codepage when not using a reset-vector.

#pragma reset Vector 0O /1 at byte address O
#pragma reset Vector 10 /1 at byte address 10
#pragma reset Vector - /1 NO reset-vector

#pragma return[<n>] = <strings or constants>

Allows multiple return statements to be inserted. This statement should be proceeded by the skip()
statement. The compiler may otherwise remove most returns. The constant <n> is optional, but it allows
the compiler to print a warning when the number of constants is not equal to <n>. Refer to Chapter 9.1

50

CCB8E C Compiler B Knudsen Data

Computed Goto on page 105 for more details. Note that ‘const’ data types should normally be used for
constant data.

ski p(W;
#define NoH 11

#pragma return[NoH] = "Hello world"
#pragma return[5] =1, 4, 5, 6, 7
#pragma return[] =012 3 44 "'H \

"Hell 0" 2 3 4 0x44
#pragma return[]="H 'e 'I" '"I" '0
#pragma return[3] = 0b010110 \

0b111 0x10
#pragma return[9] = "a \" \r\n\0"

#pragma return[] = (10+10*2), (Ox80+' E') "nd"
#pragma return[] = 10000 : 16 /* 16 bit constant */ \
0x123456 : 24 [* 24 bit constant */ \
(10000 * 10000) : 32 /* 32 bit constant */

#pragma sectionDef <name> [:<id> <start> <end> [PROTECTED]]
#pragma sectionDef allows code sections to be defined and used in the application when generating

relocatable assembly (option -rsc) . Predefined code sections are STARTUP, ISERVERS, ISERVER18
and PROG. These definitions will also automatically appear in the script file.

#pragm sectionDef |DLOC:idl ocs 0x200000 - 0x200007 PROTECTED
#pragm sectionDef CONFIGS: config 0x300000 - 0x30000D PROTECTED
#pragm secti onDef EEPROM eedata OxFO0000 - OxFOOOFF PROTECTED
#pragm secti onDef APPSEC. appdef1 0x1000 - Ox102F

#pragm sectionDef PROG

Further details are found in Section Using code sections on page 85 in Chapter 6.7 Linker Support.

#pragma sharedAllocation

This pragma allows functions containing local variables and parameters to be shared between
independent call trees (interrupt and the main program). However, when doing this there will be a risk of
overwriting these shared variables unless special care is taken. Further description is found in Section
“Functions shared between independent call trees™ in Chapter 6.1 Subroutine Call Level Checking.

#pragma stackLevels <n>

The number of call levels can be defined (normally not required). PIC18 uses 31 levels by default.
#pragm stackLevels 30 // max 128

#pragma unlocklSR

The interrupt routines normally have to reside at addresses 0x8 and 0x18 when using the original PIC18
core devices. The following pragma statement will allow the interrupt routines to be placed anywhere.
Note that links to the interrupt function have to be set up manually when not the default 0x8/0x18
addresses. The enhanced PIC18 core devices does not require this statement.

#pragma unl ockl SR

#pragma updateBank [entry | exit | default] [=] <0,1>

The main usage of #pragma updateBank is to allow the automatic updating of the bank selection register
to be switched on and off locally. These statements can also be inserted outside functions, but they should
surround a region as small as possible:

51

CCB8E C Compiler B Knudsen Data

#pragm updateBank 0 /* OFF */
#pragm updat eBank 1 /* ON */

Another use of #pragma updateBank is to instruct the bank update algorithm to do certain selections.
These statements can only be used inside functions:

#pragm updat eBank entry = 0
/* The 'entry' bank forces the bank bits to be set
to a certain value when calling this function */

#pragm updat eBank exit =1
/* The '"exit' bank forces the bank bits to be set
to a certain value at return fromthis function */

#pragma updat eBank default = 0

/* The 'default' bank is used by the conpiler for
| oops and | abel s when the al gorithm gives up
finding the optimal choice */

#pragma versionFile [<file>]

Allows a version number at the end of the include file to be incremented for each compilation. The use of
this statement is defined in Chapter 5.2 Automatic incrementing version number in a file on page 57.

4.2 PICmicro Configuration

PICmicro configuration information can be put in the generated hex and assembly file. ID locations can
also be programmed. The configuration information is generated ONLY WHEN the #pragma config
statement is used. The compiler supports both direct and symbolic setting of the device configuration. It
is NOT allowed to combine direct and symbolic config settings.

SYMBOLIC CONFIG SETTING:
The config settings can be defined using standard symbols for the actual device. Example usage:
#pragm config <id> = <state> [, <id> = <state>]
#pragma config OSC = INTIO7 // Internal oscillator
#pragma config FCMEN = ON
#pragma config | ESO = ON
#pragm config PWRT = ON, BOREN = SBORDI S

Option -VG or -VVg will list the available symbolic config settings at the end of the *.var file generated for
the project. This list can be copied to a project C source file and modified to desired settings.

-VG : list default config settings and alternatives
-Vg : list config setting alternatives

The config symbols are found at at the end of the device header file. Example definitions:
#pragma config /<regNr> <val ue> <id> = <state>
#pragma config /1 OxFO OSC = LP // LP oscillator
#pragma config /1 OxF9 OSC = | NTI O7

#pragma config /1 OxBF FCMEN = OFF
#pragma config /1 OxFF FCMEN = ON

52

CCB8E C Compiler B Knudsen Data

DIRECT CONFIG SETTING:
#pragma confi g[<of fset>] = <expressi on>
#pragma confi g[<of fset>] |= <expression>
#pragma confi g[<of fset>] &= <expressi on>

#pragma config[0] = 0Ob.1.000.0101 /1l byte at address 0x300000
#pragma config[1l] |= 3 /1 set bit 0,1 (addr 0x300001)
#pragma config[2] & ~OxFO, |= Ox80 // clear bit 4-7, set bit 7

#pragma config[2+1] = OxF | 0x80
The CONFIG word start address for PIC18 is 0x300000.
The CONFIG and ID are specified in BYTES. CC8E will join 2 bytes into a 16 bit WORD in the
generated hex, asm and list files. If only one byte is defined for a word, then the default value is used for

the undefined byte. The default setting of config attributes are 1. ID locations have 0 as default value.

It is also possible to define the CONFIG and ID locations by using #pragma cdata statements. Then 16
bits words are defined directly.

It is possible to use the STANDARD MPASM identifiers for defining to configuration bits. See example
in file ‘config.txt'.

Setting ID-locations in the source code:
#pragma config | D <of fset>] = <expression>

#pragma config D 0] = 0x99 /1 byte at address 0x200000
#pragma config I D 1] = 0x88 /1 byte at address 0x200001
#pragma config ID 2] = 0x03

The 1D word start address for PIC18 is 0x200000.

53

CCB8E C Compiler B Knudsen Data

5 COMMAND LINE OPTIONS

The compiler needs a C source file name to start compiling. Other arguments can be added if required.
The syntax is:

CCBE [options] <src>.c [options]

-a[<asmfile>] : generate assembly file.
The default file name is <src>.asm

-A[scHDftumiJRN+N+N] : assembly file options

s: symbolic arguments are replaced by numbers

c: no C source code is printed

H: hexadecimal humbers only

D: decimal numbers only

f: no object format directive is printed

t: no tabulators, normal spaces only

u: no extra info at the end of the assembly file

m: single source line only

i: no source indentation, straight left margin

J: put source after instructions to achieve a compact assembly file.
R: detailed macro expansion

N+N+N: label, mnemonic and argument spacing. Default is 8+6+10.

-b : do not update bank selection bits (BSR register)

-bu : non-optimized updating of the bank selection bits

-ban : do not update ADSHR (sfr selection bit)

-bo<N>: map ram banks, origin <N>. The RAM bank origin is the MSB address of bank 0. The default
RAM bank origin is 0. For example, -bo5 will map variables located in bank 0 to 0x560 - OX5FF, bank 1
variables to 0x600 - Ox6FF, etc. The access bank and variables set to absolute addresses are not affected
by the RAM bank origin. Using -bo will map the bank origin to the actual RAM start of the device.

-B[pims] : write output from preprocessor to *.cpr
p : partial preprocessing

i :no include files

m: modify symbols

s : modify strings

-cae : do not move global variables from the access bank to bank 0 when the access bank is full

-cd : allow cdata outside program space (warning only)

-cfc : use old format on config and idlocs in generated assembly file

-cgi : create an interrupt vector table and assosiated interrupt functions, but only if file "<device>-int.c"
does not exist and only if the device supports interrupt vector tables.

-cif : search included file in directory containing current file(s)

-cu : use 32 bit evaluation of constant expressions

-cxc : do not search current directory for include files

-CFJ[<file>] : produce COFF (.cof) debugging file, C mode
-CCJ<file>] : produce COD debugging file, C mode
-CAJ<file>] : produce COD debugging file, ASM mode
-Ce : remove extra byte names (nnn_e<N>) from COD file
-dc : do not write compiler output file <src>.occ

-D<name>[<token>xxx] : define macro. Equivalent to #define name xxx

54

CCB8E C Compiler B Knudsen Data

-e : single line error messages (no source lines are printed).
-ed : do not print error details

-ew : do not print warning details

-eL : list error and warning details at the end

-E<N> : stop after <N> errors (default is 4).

-f<hex-file-format> : i.e. INHX8M, INHX8S, INHX16, INHX32. Default is INHX32. Note that
INHX8S uses two output files: <file>.HXH and <file>.HXL

-F : generate error file *.err
-FM : MPLAB and MPLAB X compatible error format

-g : do not replace call by goto

-GW : dynamic selected skip() format, warning on long format

-GD : dynamic selected skip() format (default)

-GS : always short skip() format (error if 256 byte boundary is crossed)
-GL : always long skip() format

-I<directory> : include files directory/folder. Up to 5 library directories can be supplied by using
separate -I<dir> options. When using #include "test.h" the current directory is first searched. If the file is
not found there, then the library directories are searched, in the same order as supplied in the command
line option list (-1<dir>). The current directory is skipped when using #include <test.h>.

-li<ENVI> : include directory from environment variable (default CCINC)
-Ihn<ENVD> : load default directory from environment variable (default CCHOME)

-L[<col>,<lin>] : generate list file <src>.Ist

The maximun number of columns per line <col> and lines per page <lin> can be changed. The default
setting is -L80,60

-Ln : produce list file with no page formatting

-LFSR- : do not use the LFSR instruction
-LFSR+ : use the LFSR instruction

-mc1l : default 'const’ pointer size is 1 byte (8 bits)

-mc2 : default ‘const’ pointer size is 2 bytes (16 bits)

-mrl : default RAM pointer size is 1 byte

-mr2 : default RAM pointer size is 2 bytes

-mm1 : default pointer size is 1 byte (all pointer types)

-mm?2 : default pointer size is 2 bytes (all pointer types)

-Ma : truncate all automatic generated labels in the assembly/list files
-o<file> : write hex file to <file>

-O<folder> : output files folder. Files generated by the compiler are put on this folder, except when a full
path name is supplied.

-p<device> : defines the chip type (e.g., -pPIC18C242 or —-p18C242). The device has to be supported by
a header file (e.g., 18C242.H). No default device is available.

-p- : clear any preceding -p<chip> to allow chip redefinition

55

CCB8E C Compiler B Knudsen Data

-g<N>: assume disabled interrupt at the <N> deepest call levels. For example, —q1 allows the main
program to use all stack levels for function calls. Disabling interrupts at the deepest call level MUST then
be properly ensured in the user application program.

-Q : generate call tree file (*.fcs).

-r : generate relocatable assembly (no hex file)

-rsc[=][<filename.lkr>] : generate relocatable asm, and update the linker script file
-r2[=][<filename.lkr>] : generate relocatable asm, use separate logical section for interrupt routine
-rb<N>: name on RAM bank 0 is BANK<N>, default BANKO

-ro<N>: add offset <N> when generating local variable block name

-rx : make variables static by default

-S : silent operation of the compiler
-u : no optimizing

-V[rnuDGg] : generate variable file, <src>.var, sorted by address as default.
r: only variables which are referenced in the code

n: sort by name

u: unsorted

D: decimal numbers

G: list default config settings and alternatives

g: list config setting alternatives

-wC : warning on upward compatibility issues

-we : disable warning when fixed point constants are rounded

-wf : disable warning for read-modify-write sequences on the same PORT
-wi : disable warning on multiple inline math integer operations

-wm : disable warning on single call to math integer function

-wO : warning on operator library calls

-wr : disable warning on recursive calls

-wS : warning (no error) when constant expression loses significant bits
-wU : warning on uncalled functions

-wx : disable warning on "suspicious pointer conversion"

-wz : disable warning on "incompatible and nonportable pointer conversion™

-W : wait until key pressed after compilation

-x<file> : assembler executable: -x"C:\Program Files\Microchip\MPASM Suite\mpasmwin.exe"
-X<option> : assembler option: -X/q (all options must be separate)

-zZ : optimize (inline multiplication) for size
-zD : optimize (inline multiplication) for speed (default)

Doublequotes " " allows spaces in the option:
-1"C\Program Fi |l es\ cc8e"

A path name can be written using /' if this is supported by the file system, for example:
c:/compiler/lib/file.h

Default compiler settings:

» hex file output to file <name>.hex
e optimizing on

» extended call level is allowed

e update bank selection bits

56

CCB8E C Compiler B Knudsen Data

Permanent assigned settings:
* nested comments is allowed
e charis unsigned

5.1 Options in afile
Options can be put in a file. The syntax is:

cc8e [..] +<filename> [..]

Many option files can be included, and up to 5 levels of nested include files are allowed. Options in a file
allow an unlimited number of options to be stated. Linefeed, space and TAB separates each option.
Comments can be added in the option file using the syntax:

/1 the rest of the line is a coment

Spaces can be added to each option if a space is added after the '-' starting the option. This syntax disables
using more than one option on each line. Examples:

- DMC =1+ OP

- p 18C242 /1 comrent

-p 18C242 /1 this will not work

- p 18C242 -a [// not this either

Note that the file path is required if the file does not reside on the current directory.
String translation rules for options in a file:

1. Doublequotes " " allow spaces in the option; quotes are removed
2. Using \" means a single quote " in an option

-1"C\Program Fi |l es\ cc8e" ==> -1 C.\Program Fi | es\ cc8e
-1C."\Program Fil es"\cc8e ==> -1 C.\Program Fi | es\ cc8e
-DWString="\"Hello\n\"" ==> -DWString="Hel l o\ n"
-DQuot e="\\"" ==> -DQuote="\""'

5.2 Automatic incrementing version number in a file

The compiler is able to automatically increment one or more version numbers for each compilation.
Three different syntax alternatives are available.

1. Option : -ver#verfile.c
#i nclude "verfile.c" [/ or <verfile.c>

2. Option : -ver
#pragma versionFile /1 next include is version file
#include "verfile.c" [/ or <verfile.c>

3. Option : -ver
#pragma versionFile "verfile.c" [/ or <verfile.c>

Note that the command line option is required to make this increment happen. It is the decimal number
found at end of the included file that is incremented. The updated file is written back before the file is
compiled. No special syntax is assumed in the version file. Suggestions:

#defi ne MY_VERSI ON 20

57

CCB8E C Compiler B Knudsen Data

#define VER STRING "1.02.0005"
/* VERSION : 01110 */

If the decimal number is 99, then the new number will be 100 and the file length increases by 1. If the
number is 099, then the file length remains the same. A version file should not be too large (up to 20k),
otherwise an error is printed.

Formats 2 and 3 above allow more than one version file. It is recommended to use conditional
compilation to manage several editions of the same program.

5.3 Environment Variables
Environment variables can be used to define include folders and primary folder:

The variable CCINC is an alternative to the -I<path> option. The compiler will only read this variable (or
specified variable) when using the following command line option:

-1 . read default environment variable CCI NC
-li <ENVI > : read specific environnent variable

Variable CCHOME can be used to define the primary folder during compilation. The compiler will only
read this variable (or specified variable) when using the following command line option:

-lh . read default environnment variable CCHOVE
-1 h<ENVP> : read specific environnent variable

58

CCB8E C Compiler B Knudsen Data

6 PROGRAM CODE

6.1 Subroutine Call Level Checking

Subroutine calls are limited to 31 levels for PIC18 devices. The compiler automatically checks that this
limit is not exceeded.

The compiler can replace CALL by GOTO to seemingly achieve deeper call levels.

1. When a function is called once only, the CALL can be replaced by a GOTO. All corresponding
returns are replaced by GOTO. Note that the call will only be replaced by GOTO when the call
level must be reduced. Also, the CALL is NOT replaced by GOTO when:

a) The program counter (PCL) is manipulated in the user code (computed goto) in a function of
type char.

b) The number of return literals exceeds 10

2. Call followed by return is replaced by a single goto.

Stack level checking when using interrupt

CCS8E will normally assume that an interrupt can occur anywhere in the main program, and also at the
deepest call level. An error message is printed if stack overflow may occur. This is not always true,
because the interrupt enable bits control when interrupts are allowed. Sometimes the main program needs
all 31 stack levels for making calls.

The -q<N> option forces CC8E to assume that an interrupt will NOT occur at the <N> deepest call levels
of the main program.

The application writer must then ensure that interrupts will not occur when executing functions at the
deepest <N> call levels, normally by using the global interrupt enable bit. CC8E will generate a warning
for the critical functions. (The normal error message is always generated when the application contains
more than 31 call levels.)

For example, the -q1 option generates a warning for functions calls that will put the return address at
stack level 31 (no free stack entry for interrupt). Using -q2 means an additional warning at stack level 30
will be generated if the interrupt routine requires 2 levels, i.e. contains function calls.

It is NOT recommended to use the -q<N> as a default option.

Functions shared between independent call trees

An error message is normally printed when the compiler detects functions that are called both from
main() and during interrupt processing if this function contains local variables or parameters. This also
applies to math library calls and const access functions. The reason for the error is that local variables are
allocated statically and may be overwritten if the routine is interrupted and then called during interrupt
processing.

The error message will be changed to a warning by the following pragma statement. Note that this means
that local variable and parameter overwriting must be avoided by careful code writing.

#pragma shar edAl | ocati on
Recursive functions

Recursive functions are possible. Please note that the termination condition has to be defined in the
application code, and therefore the call level checking cannot be done by the compiler. Also note that the

59

CCB8E C Compiler B Knudsen Data

compiler does not allow any local variables in recursive functions. Function parameters and local
variables can be handled by writing code that emulates a stack.

A warning is printed when the compiler detects that a function calls itself directly or through another
function. This warning can be switched off with the -wr command line option.

6.2 Interrupts

The Enhanced PIC18 core
NOTE: The description in this section applies ONLY to enhanced P1C18 core devices.

The enhanced PIC18 devices supports interrupt vector tables in addition to the original high and low
priority interrupts. CC8E supports both types.

Interrupt functions does not have to be located on specific addresses. The addresses of the interrupt
functions have to be dividable by 4. CC8E will automatically insert extra DW statements to ensure
address alignment.

Option -cgi will tell the compiler to create an interrupt vector table and assosiated interrupt functions, but
only if file "<device>-int.c" (f.ex. "18F57Q43-int.h") does not exist. The contents of this file can be
copied to the proper project source file and modified. The file contains 3 main parts:

» List of defines to include or exclude specific interrupts
» Device specific interrupt vector table
e Interrupt functions where user code can be added

The interrupt vector table can be located anywhere. More than one interrupt vector table can be defined
and used. If the interrupt vector table is located before the interrupt functions, then it is required to define
prototypes for the interrupt functions.

The compiler will insert "RETFIE 1" as default when returning from an interrupt function to enable
automatic context restore. The compiler will not perform any register save check. This is equivalent of
using: #pragma interruptSaveCheck n.

Note that IVTBASE (IVTBASE?24) have to be set manually according to the location of the interrupt
vector table. The default address 0x8 can also be used.

The MVECEN bit in CONFIG2L have to be set correctly manually. The compiler will not ensure
consistent setting of this bit.

- MVECEN = 0: traditional interrupt setup. The address pointed by IVTBASE is used as the high
priority interrupt vector address. The low priority interrupt vector address is offset eight instruction
words from the address in IVTBASE.

- MVECEN = 1: interrupt vector table. Each interrupt has a unique vector number associated.

The structure of the interrupt setup is as follows. It is not required to include "int18xxx.h":

interrupt NVM.isr(void)

/1 handl e the interrupt
NVMMF = 0; // must be cleared by software

60

CCB8E C Compiler B Knudsen Data

interrupt default _isr(void)

{
}

const IntVectorl1l6 intVectorTablel[] = {

/1 systemfailure - exception handling required

default _isr, /1 0 Software |nterrupt
default _isr, /1 1 HLVD

default _isr, /1 2 OSF

default _isr, /1 3 CSW

NVM i sr, /1 4 NVM

default _isr, /1 5 SCAN

/..

default _isr, /1 81 CLCA
1

voi d set| VIBASE(voi d)
/1 MVECEN bit in CONFI&L nust be 1 for vector table interrupt
GE=0; // Disable interrupts
/1 Required sequence to unlock | VIBASE
| VTILOCK = 0x55;

| VTLOCK = OXAA;
| VTLOCKED 0;

| VTBASE24 = (uns24) intVectorTabl el;
/1 Required sequence to | ock | VIBASE
| VTLOCK = 0x55;

| VTLOCK = OxAA;

| VTLOCKED = 1;

/IAE =1; [/ Enable interrupts

Notes for vectored interrupt (according to Microchip device doc):
* The vector number is stored in the WREG register when entering the ISR

» Most of the flag bits are required to be cleared by the application software, but in some cases, device
hardware clears the interrupt automatically.

« Some flag bits are read-only in the PIRX registers, these flags are a summary of the source interrupts
and the corresponding interrupt flags of the source must be cleared.

« Avvalid interrupt can be either a high or low priority interrupt when in main routine or a high priority
interrupt when in low priority Interrupt Service Routine.

» The Interrupt controller supports a two-level deep context saving (Main routine context and Low ISR
context). CPU registers saved include STATUS, WREG, BSR, FSR0/1/2, PRODL/H and
PCLATH/U.

61

CCB8E C Compiler B Knudsen Data

e When RETFIE 1 instruction is executed, the PC is loaded with the saved PC value from the top of
the PC stack. Saved context is also restored with the execution of this instruction. Thus, execution
returns to the previous state of operation that existed before the interrupt occurred.

* When RETFIE 0 instruction is executed, the saved context is NOT restored back to the registers.

The Original PIC18 core
NOTE: The description in this section applies ONLY to the original PIC18 core devices.

The PIC18 devices allows both low priority and high priority interrupts.
The structure of the interrupt service routine is as follows:

#i ncl ude "int 18XXX. h"

void _highPrioritylnt(void);

#pragma origin 0x8
i nterrupt highPrioritylntServer(void)

{
/1 W STATUS and BSR are saved to shadow regi sters autonatically
/1 handl e the interrupt
/1 8 code words available including call and RETFIE
_highPrioritylnt();
/1l restore W STATUS and BSR from shadow regi sters
#pragma fast Mode

}

#pragma origin 0x18

interrupt |owPrioritylntServer(void)

{
/1 W STATUS and BSR are saved by the next macro.
i nt_save_registers

/* NOTE : shadow regi sters are updated, but will be
overwritten in case of a high-priority interrupt.
Ther ef ore #pragma fast Mode shoul d not be used on
lowpriority interrupts. */

/'l save remai ning registers on demand (error/warning)

/1unsl6 sv_FSRO = FSRO;
//unsl6 sv_FSRl1 = FSRIi;
//unsl6 sv_FSR2 = FSR2;
/1 uns8 sv_PCLATH = PCLATH,
/1uns8 sv_PCLATU = PCLATU,

//uns8 sv_PRODL = PRODL;
//uns8 sv_PRODH = PRODH,
/1uns24 sv_TBLPTR = TBLPTR
/1uns8 sv_TABLAT = TABLAT,;

/1 handl e the interrupt

1.
/! restore registers that are saved

62

CCB8E C Compiler B Knudsen Data

/1 FSRO = sv_FSRO;
/1 FSR1 = sv_FSRi;
/1 FSR2 = sv_FSR2;

/1 PCLATH = sv_PCLATH;
/1 PCLATU = sv_PCLATU;
/1 PRODL = sv_PRODL;
/1 PRODH = sv_PRODH;
/1 TBLPTR = sv_TBLPTR;
/1 TABLAT = sv_TABLAT;

int restore_registers // W STATUS and BSR
}

/* IMPORTANT : G EH A E or GEL should nornally NOT be
set or cleared in the interrupt routine. GEH G EL are
AUTOVATI CALLY cl eared on interrupt entry by the CPU
and set to 1 on exit (by RETFIE). Setting GEH/GEL to
1 inside the interrupt service routine will cause
nested interrupts if an interrupt is pending. Too deep
nesting may crash the program! */

void _highPrioritylnt(void)
/'l save registers on demand

/1 restore registers on denand

}

The keyword interrupt allows the routine to be terminated by a RETFIE instruction. It is possible to call a
function from the interrupt routine (it has to be defined by a prototype function definition first).

The interrupt routine requires at least one free stack location because the return address is pushed on the
stack. This is automatically checked by the compiler. Even function calls from the interrupt routine are
checked. However, if the program contains recursive functions, then the call level cannot be checked by
the compiler.

The interrupt vectors are permanently set to addresses 0x8 and 0x18. The interrupt service routines can
only be located at these addresses. The #pragma origin statement has to be used in order to skip unused
program locations.

The following pragma statement will allow the interrupt routine to be placed anywhere. Note that the
compiler will NOT generate the link from address 0x8/0x18 to the interrupt routine.

#pragma unl ockl SR

Vital registers such as STATUS, BSR and W should be saved and restored by the interrupt routine.
However, registers that are not modified by the interrupt routine do not have to be saved. The file
‘int18xxx.h’ contains recommended program sequences for saving and restoring registers. Other registers
must be saved manually. The interrupt routine can also contain local variables. Storage for local variables
is allocated separately because interrupts can occur anytime.

IMPORTANT: CC8E will AUTOMATICALLY check that vital registers are saved and restored during
interrupt. This applies to:

Group 1: WMWREG STATUS, BSR : npbst frequent used
Group 2: FSRO, FSR1, FSR2 : indirect access

63

CCB8E C Compiler B Knudsen Data

Group 3: TBLPTR, TABLAT . reading 'const' data
Group 4: PRODL, PRODH : multiplication instructions
Group 5: PCLATH, PCLATU . computed goto

NOTE that it is not required to save registers before starting to service the interrupt. Section Custom
interrupt save and restore on page 64 shows a list of instructions that that will not disturb the main
registers.

It is possible to limit the save and restore of a specific register to a small region inside the interrupt
service routine, if this register is modified only inside this region.

CCB8E supports CUSTOM save and restore sequences. If you want to use your own register save and
restore during interrupt, please read the following Section, Custom interrupt save and restore.

The compiler will detect if the initially mentioned registers are modified during interrupt processing
without being saved and restored. The supplied macros for saving and restoring registers will only save
W, STATUS and BSR. The other registers have to be saved and restored by user code when needed.

For example, if FSRO is modified by a table or pointer access, or by direct writing, the compiler will
check that FSRO is saved and restored, even in nested function calls. Note that saving and restoring FSRO
can be done in a local region surrounding the indexed access, and does not need to be done in the
beginning and end of the interrupt routine.

A warning is printed if the Group 2 - 5 registers mentioned above are saved but not changed. The error
and warning messages printed can be removed:

#pragma i nterrupt SaveCheck n // no warning or error
#pragma i nterrupt SaveCheck w // warning only
#pragma i nterrupt SaveCheck e // error and warning (default)

Note that the above pragma changes the checking done on all registers.

Custom interrupt save and restore

It is not required to use the above save and restore macros. CC8E also supports custom interrupt
structures.

A) You might want to use your own save and restore sequence. This can be done by inline assembly. If
CCB8E does not accept your code, just insert (at your own risk):

#pragma i nterrupt SaveCheck n // no warning or error

B) No registers need to be saved when using the following instructions in the interrupt routine. The
register save checking should NOT be disabled.

bt ss(bx1); /1 BTFSS 0x70, bx1 ; access RAM SFR only
bx2 = 1; /1 BSF 0x70,bx2 ; access RAM SFR only
bx1 = 0; /1 BCF 0x70,bx1 ; access RAM SFR only
bx3 = ! bx3; /1 BTG 0x70,bx3 ; access RAM SFR only
bt sc(bx1); /1 BTFSC 0x70, bx1l ; access RAM SFR only
vs = swap(vs); [// SWAPF vs,1 ; access RAM SFR only
vs = incsz(vs); // INCFSZ vs,1 ; access RAM SFR only
nop(); /1 NOP

vs = decsz(vs); // DECFSZ vs,1 ; access RAM SFR only
clrwdt (); /1 CLRWDT

a = b; /1 MOWFF a, b ; all RAM SFR

..etc. /1 CALL, GOTO BRA, RCALL,..

64

CCB8E C Compiler B Knudsen Data

C) Itis possible to enable interrupt only in special regions (wait loops) in such a way that main registers
can be modified during interrupt without disturbing the main program. The register save can then be
omitted and the save checking must be switched off to avoid error messages:

#pragma i nterrupt SaveCheck n // no warning or error

INTERRUPTS CAN BE VERY DIFFICULT. THE PITFALLS ARE MANY.

6.3 Startup and Termination Code

The startup code consists of a jump to main(). No variables are initiated. All initialization has to be done
by user code. This simplifies design when using the watchdog timer or MCLR pin for wakeup purposes.

It is possible to locate main() in any codepage if the reset vector is omitted. This is done by the following
pragma statement. Proper startup code must be inserted manually when removing the automatic reset
vector, for example by cdata[] statements (file ‘cdata.txt’).

#pragma reset Vector -
The SLEEP instruction is executed when the processor exits main(). This stops program execution and
the chip enters low power mode. Program execution may be restarted by a watchdog timer timeout or a
low state on the MCLR pin.

PIC18 devices also allow restart by interrupt. A RESET instruction is therefore inserted if main is
allowed to terminate (SLEEP). This ensures repeated execution of the main program.

Clearing ALL RAM locations

The internal function clearRAM() will set all RAM locations to zero. The generated code uses the FSRO
register. The recommended usage is:

voi d mai n(voi d)

{
if (TO==1&&% PD ==1/* power up */) {
WARM_RESET:
clearRAM); // set all RAMto O
}
i f (condition)
got o WARM RESET;
}

The code size and timing depends on the actual chip. Typically 4 or 5 instruction cycles is required for
each RAM location. At 4 MHz, each instruction cycle is 1 microsecond. The PIC18C452 device contains
1536 RAM locations which means 1536*5 = 7680 instruction cycles or 7.68 milliseconds at 4 MHz.

6.4 Library Support

The library support includes standard math and support for user defined libraries. The library files
should be included in the beginning of the application, but after the interrupt routines.

/1 ..interrupt routines

#i ncl ude “mat hl6. h” /1 16 bit integer math
#include “math24f.h” // 24 bit floating point
#include “math24l b.h” // 24 bit math functions

65

CCB8E C Compiler B Knudsen Data

CCS8E will automatically delete unused library functions. This feature can also be used to delete unused
application functions:

#pragma library 1
/1 library functions defined here are deleted if unused
#pragma library O

Math libraries

Integer: 8, 16, 24 and 32 bit, signed and unsigned
Fi xed point: 20 formats, signed and unsigned
Fl oating point: 16, 24 and 32 bhit

All libraries are optimized to get compact code. All variables (except for the floating point flags) are
allocated on the generated stack to enable efficient RAM reuse with other local variables.

Note that fixed point requires manual worst case analysis to get correct results. This must include
calculation of accumulated error and avoiding truncation and loss of significant bits. It is often
straightforward to get correct results when using floating point. However, floating point functions require
significantly more code. In general, floating point and fixed point are both slow to execute. Floating point
is FASTER than fixed point on multiplication and division, but slower on most other operations.

Operations not found in the libraries are handled by the built in code generator. Also, the compiler will
use inline code for operations that are most efficiently handled inline.

The following command line options are available:

-we : no warning when fixed point constants are rounded
-wO : warning on operator library calls

-wi : no warning on multiple inline math integer operations
-wm : no warning on single call to math integer function

Integer libraries

The math integer libraries allow selection between different optimizations, speed or size. The libraries
contain operations for multiplication, division and division remainder.

mat hl16.h : basic library, up to 16 bit
mat h24. h : basic library, up to 24 bit
mat h32. h : basic library, up to 32 bit
The min and max timng cycles are approximte only.

Sign: -: unsigned, S: signed

Sign Res=argl op arg2 Program Approx. CYCLES

A: mat h32. h

B: mat h24. h

C.mat h16. h Code mn aver max
.B. S 24 = 16 * 16 31 45 45 47
A S 32 =16 * 16 41 53 54 59
A . - 32 =16 * 16 29 47 47 47
.B. - 24 = 24 * 24 31 51 51 51
A. S 32 =32 * 16 49 68 68 71
A - 32 =32 * 16 43 65 65 65
A S/- 32 =32 * 32 57 83 83 83

66

CCB8E C Compiler

B Knudsen Data

ABC -
AB. -
A . -
ABC -

>
. W

w w
' NOLOOLOOOnN

w .

gy

@ .

O
VOOLOHLOONOWY

16
24
32
16
24
32
24
32

16
24
32
16
24
32
24
32

8
8
8
16
16
16
24
32

8
8
8
16
16
16
24
32

16
24
32
16
24
32
24
32

16
24
32
16
24
32
24
32

16
24
32
16
24
32
24
32

16
24
32
16
24
32
24
32

Fixed point libraries

math16x.h : 16 bit fixed point, 8_8, signed and unsigned
math24x.h : 24 bit fixed point 8_16, 16_8, signed and unsigned
math32x.h : 32 bit fixed point 8_24, 16 _16, 24_8, signed and unsigned

The libraries can be used separately or combined.

00 00

16
16

24
32

~ Y Y Y Y~~~

16
16
16
24
32

~ e~~~

% 8
% 8
% 8
% 16
% 16
% 16
% 24
% 32

% 8
% 8
% 8
% 16
% 16
% 16
% 24
% 32

19
20
21
22
25
26
29
36

33
35
37
43
45
47
52
61

18
19
20
20
23
24
27
34

26
28
30
40
42
44
50
60

231
364
513
234
391
548
442
714

192
301
426
243
376
525
451
723

222
353
500
227
374
521
434
705

186
294
417
238
371
519
445
716

231
364
513
237
407
576
448
724

196
305
431
251
395
555
463
740

222
353
500
229
393
557
439
713

186
295
418
242
382
537
453
728

231
364
513
282
487
676
562
938

205
316
443
304
463
638
586
964

222
353
500
259
454
633
530
897

189
298
422
277
426
591
549
918

The timing stated is measured in instruction cycles (4*clock) and includes parameter transfer, call, return
and assignment of the return value. The min and max timing cycles are approximate only.

Sign: -:

unsi gned, S:

Si gn Res=argl

mat h16x.
S 8 8

>

>

op

*
*
/
/

arg2

si gned

Program

Code
44
23
46
29

Code

Appr ox. CYCLES
mn aver max
51 53 57
39 39 39
423 441 508
438 454 534
mn aver max

67

CCB8E C Compiler

B Knudsen Data

S 16 8 = 16 8 * 16_8
- 16 8 = 16 8 * 16_8
S 16 8 = 16 8 / 16_8
- 16 8 = 16 8 / 16_8
S 8 16 = 8 16 * 8 16
- 8 16 = 8 16 * 8 16
S 8 16 = 8 16 / 8 16
- 8 16 = 8 16 / 8 16
mat h32x. h:

S 24 8 = 24 8 * 24 8
- 24 8 = 24 8 * 24 8
S 24 8 =24 8/ 24 8
- 24 8 =24 8/ 24 8
S 16_16= 16 _16*16_16
- 16_16= 16 _16*16_16
S 16 _16= 16 _16/16_16
- 16 _16= 16 _16/16_16
S 8 24 =8 24 * 8 24
- 8 24 =8 24 * 8 24
S 8 24 =824/ 8 24
- 8 24 =824 /| 8 24

Floating point libraries

74
50
55
36

89
65
55
36

Code

150

123
64
43

135
108
64
43

112
85
64
43

84
72
687
710

99
87
847
878

mn
125
113
1015
1046

148
136
1207
1246

163
151
1399
1446

88
72
719
735

103

87
896
919

aver
129
113

1055

1080

152
136
1273
1305

167
151
1491
1529

92
72
862
902

107
87
1062
1118

max
135
113
1312
1366

158
136
1560
1630

173
151
1808
1894

mat h16f . h 16 bit
mat h24f .h : 24 bit
mat h24l b. h : 24 bit
mat h32f . h : 32 bit
mat h32I b. h : 32 bit

floating point

floating point
floating point

floating point
floating point

basi ¢ mat h

basi ¢ mat h
library

basi ¢ mat h
library

NOTE: The timing values include parameter transfer, call and return and also assignment of the return
value. The min and max timing cycles are approximate only.

Basic 32 bit nath: Approx. CYCLES

Si ze mn aver max
a* b: mltiplication 131 128 132 147
a/ b: division 104 441 495 580
a + b: addition 154 38 123 207
a - b: subtraction add+5 45 130 200
int32 -> fl oat 32 70 42 69 115
float32 -> int32 75 36 81 138
Basic 24 bit nath: Approx. CYCLES

Si ze mn aver max
a*b nmul tiplication 82 78 81 93
a/ b: division 87 270 297 345
a + b: addition 132 32 104 161
a-»b subtraction add+5 39 111 168
int24 -> float24 56 34 63 105

68

CCB8E C Compiler

B Knudsen Data

float24 -> int24

Basic 16 bit nmath:

* b: nmultiplication
/ b: division
+ b: addition

b.

. subtraction
ntl16 -> floatl6
loatl1l6 -> intl6

a
a
a
a
[
f

65 31 68 112

Approx. CYCLES

Si ze mn aver max

51 46 49 57
73 121 136 151
104 26 80 123

add+5 33 87 130

63 37 67 103
48 26 57 96

The following operations are handled by inline code: assignment, comparison with constants,
multiplication and division by a multiple of 2 (e.g., a*0.5, b * 1024.0, c/4.0).

Floating point library functions

float24 sqrt(float?24);

/1 square root

| nput range: positive nunbers including zero
Accuracy: MeE: 1, relative error: 1.5%10**-5 (*)

Timng: mn aver nmax
Si ze: 53 words

532 572 614 (**)

M ni mum conpl et e program exanpl e: 68 words

float32 sqrt(float32);

/1 square root

| nput range: positive nunbers including zero
Accuracy: ME: 1, relative error: 6*10**-8 (*)

Timng: mn aver max
Si ze: 63 words

955 1038 1111 (**)

M ni mum conpl et e program exanpl e: 84 words

float24 | og(float24);

/1 natural log function

I nput range: positive nunbers above zero
Accuracy: ME 1, relative error: < 1.5%10**-5 (*)

Timng: mn aver max

1210 1714 1985 (**)

Si ze: 210 words + basic 24 bit math library
M ni mum conpl et e program exanpl e: 584 words

float32 | og(float32);

/1 natural log function

I nput range: positive nunbers above zero
Accuracy: ME: 1, relative error: < 6*10**-8 (*)

Timng: mn aver max

1713 2377 2699 (**)

Si ze: 264 words + basic 32 bit math library
M ni mum conpl et e program exanpl e: 743 words

float24 | 0gl0(fl oat24);

/1 10gl0 function

I nput range: positive nunbers above zero
Accuracy: MeE 1-2, relative error: < 3*10**-5 (*)

Timng: mn aver max

1293 1794 2067 (**)

Si ze: 15 words + size of |og()
M ni mum conpl et e program exanpl e: 599 words

float32 |1 0gl0(fl oat 32);

/1 10gl0 function

| nput range: positive nunbers above zero
Accuracy: ME: 1-2, relative error: < 1.2*10**-7 (*)

Timng: mn aver nax

1840 2502 2793 (**)

69

CCB8E C Compiler B Knudsen Data

Size: 17 words + size of |og()
M ni mum conpl et e program exanpl e: 760 words

float 24 exp(float24); /1 exponential (e**x) function
I nput range: -87.3365447506, +88.7228391117
Accuracy: ME: 1, relative error: < 1.5*10**-5 (*)
Timng: mn aver max 903 1539 1725 (**)
Si ze: 247 words + 76(floor24) + basic 24 bit math
M ni mum conpl et e program exanpl e: 641 words

f

oat 32 exp(float32); /1 exponential (e**x) function
I nput range: -87.3365447506, +88.7228391117
Accuracy: MeE: 1, relative error: < 6*10**-8 (*)
Timng: mn aver max 1920 2073 2301 (**)

Si ze: 317 words + 115(fl oor32) + basic 32 bit nath
M ni mum conpl et e program exanpl e: 834 words

f

oat 24 explO(fl oat 24); /1 10**x function

I nput range: -37.9297794537, +38.531839445
Accuracy: ME: 1, relative error: < 1.5*10**-5 (*)
Timng: mn aver max 917 1610 1739 (**)

Si ze: 254 words + 76(floor24) + basic 24 bit math
M ni mum conpl et e program exanpl e: 648 words

f

oat 32 explO(fl oat 32); /1 10**x function

I nput range: -37.9297794537, +38.531839445
Accuracy: MeE: 1, relative error: < 6*10**-8 (*)
Timng: mn aver max 1565 2086 2335 (**)

Si ze: 323 words + 115(fl oor32) + basic 32 bit nath
M ni mum conpl et e program exanpl e: 840 words

float 24 sin(float24); /1 sine, input in radians
fl oat 24 cos(fl oat 24); /1 cosine, input in radians
I nput range: -512.0, +512.0
Accuracy: error: < 3*10**-5 (*)
The relative error can be larger when the output is
near 0 (for exanple near sin(2*Pl)), but the
absolute error is lower than the stated val ue.
Timng: mn aver nax 374 1195 1396 (**)
Si ze: 211 words + basic 24 bit math library
M ni mum conpl et e program exanpl e: 563 words

float 32 sin(float32); /1 sine, input in radians
float32 cos(float32); /1 cosine, input in radians
| nput range: -512.0, +512.0 : Can be used over a
much wi der range if |ower accuracy is accepted
(degrades gradually to 1 significant decinal digit
at input value 10**6)
Accuracy: error: < 1.2*%10**-7 (*)
The relative error can be larger when the output is
near 0 (for exanple near sin(2*Pl)), but the
absolute error is lower than the stated val ue.
Timng: mn aver max 1789 2193 2529 (**)
Si ze: 352 words + basic 32 bit math library
M ni mum conpl et e program exanpl e: 807 words

70

CCB8E C Compiler B Knudsen Data

(*) The accuracy of the math functions have been checked using many thousands of calculations. ME=1
means that the mantissa value can be wrong by +/- 1 (i.e. 1 bit). The relative error is then 1.5*10™ for 24
bit floating point, and 6*10°® for 32 bit floating point. Only a small fraction of the calculations may have
the stated error.

(**) The min and max timing cycles are approximate only. All timing is measured in instruction cycles.
When using a 4 MHz oscillator, one instruction cycle is 1 microsecond.

Fast and compact inline operations
The compiler will use inline code for efficiency at some important operations:

Integer:

- converting to left and right shifts; a*8,a/2

- selecting high/low bytes/words: a / 256, a % 256, b % 0x10000
- replacing remainder by AND operation: a % 64, a % 0x80

Fixed Point:
- converting to left and right shifts: a*8,a/2
- all operations except multiplication and division are implemented inline

Floating point:

- add/sub (incr/decr) of exponent: a * 128.0,a/2
- operations==and!=: a==b,a!=0.0

- comparing with constants; a >0, a<=10.0

- inverting the sign bit: a=-a,b=-a

Combining inline integer math and library calls
It is possible to force the compiler to generate inline integer math code after a math library is included.

This may be useful when speed is critical or in the interrupt service routine. Functions with parameters or
local variables are not reentrant because local variables are mapped to global addresses, and therefore the
compiler will not allow calls from both main and the interrupt service routine to the same function.
unsl6 a, b, c;
a=»>b*c; /1 inline code is generated
#i ncl ude "mat h16. h"
a=>b* c /1 math library function is called
#pragma inlineMath 1
a=»>b*c; /1 inline code is generated

#pragma inlineMath 0O

a=>b*c; /1 math library function is called

Inline type modifier on math operations

It is possible to combine inline integer math and math library functions without making a special purpose
math library. This is done by stating that the selected operations are inline BEFORE the standard math
library is included. It is optimal to use inline code when there is only one operation of a certain type.

inline uns24 operator * (uns24 argl, uns24 arg2);
#i ncl ude "mat h24. h"

71

CCB8E C Compiler B Knudsen Data

The math prototypes are found in the beginning of the standard math libraries. Just remember to remove
the operator name before adding the inline type modifier.

A warning is printed when there is ONE call to a unsigned integer math library function. The warning can
be disabled by the -wm command line option.

NOTE that the inline type modifier is currently IGNORED, except for the math operations.

Detection of multiple inline math integer operations

The compiler will print a warning when detecting more than one inline math integer operation of the
same type. Including a math library will save code, but execute slightly slower. Note that assembly code
inspection and type casts are sometimes needed to reduce the number of library functions inserted.

The warning can be disabled by the -wi command line option.

Fixed point example

#pragma chi p Pl Cl8C242

#i ncl ude "mat h24x. h"

unsl1l6 dat a;

fixedl6_8 tx, av, ng, a, vx, prev, kp;

voi d mai n(voi d)

{
vx = 3.127;
tx += data; /] automatic type cast
data = kp; /1 assign integer part
if (tx < 0)
tx = -tx; /1 make positive
av = tx/20.0;
mg = av * 1.25;
a =ng * 0.98; /1 0.980469, error: 0.000478
prev = vx;
vx = a/5.0 + prev;
kp = vx * 0.036; /1 0.03515626, error: 0.024
kp = vx / (1.0/0.036); // 27.7773437
}

CODE: 266 code words including library (129)

Floating point example

CODE: 596 code words including library (424). The statements are identical to the above fixed point
example to enable code size comparison.

#pragma chi p Pl C18C242

#i ncl ude "mat h24f . h"

uns1l6 dat a;

float tx, av, ng, a, vx, prev, kp;

voi d mai n(voi d)

{
I nit FpFl ags(); /1 enabl e roundi ng as default
vx = 3.127,
tx += data; /1 automatic type cast
data = kp; /1 assign integer part
if (tx <0)

72

CCB8E C Compiler B Knudsen Data

tx = -tx; /1 nake positive
av = tx/20.0;
mg = av * 1.25;
a =ng * 0.98;
prev = vx;
vx = a/5.0 + prev;
kp = vx * 0.036;
kp = vx / (1.0/0.036);

}

How to save code
Choices that influence code size:

1. What libraries to include (24/32 bit float or fixed point)

2. Rounding can be disabled permanently.
#def i ne DI SABLE_ROUNDI NG
#i ncl ude "nat h32f. h"

3. Optimization. Note that “optimize for speed” is default. Also note that the code saving is small.
#define FP_OPTIMSIZE // optimze for SIZE
#define FP_OPTIM SPEED // optimze for SPEED:. default

The recommended strategy is to select a main library for the demanding math operations. Different
floating and fixed point operations should only be mixed if there is a good reason for it.

Mixing different data types is possible to save code and RAM space. For example by using a small type
in an array and a larger type for the math operations.

So, first decide what math library to include. For floating point the main decision is between the 24 bit
and the 32 bit library. If you use 32 bit operations, this can be combined with 24 (and 16) bit floating
point types to save RAM.

Automatic type conversion;
i nteger <-> float/double
i nteger <-> fixed point
fl oat <-> doubl e
fixed point <-> float/double : requires additional functions

In general, using the smallest possible data type will save code and RAM space. This must be balanced
against the extra work to analyze the program to prevent overflow and too large accumulated errors. If
there is plenty of code space in the device, and timing is no problem, then large types can be used.
Otherwise analysis is required to get optimal selections.

It is recommended to keep the number of called library functions as low as possible. Although function
selection is done automatically by the compiler, it is possible to use type casts or even make a custom
library by copying the required functions from existing libraries. All libraries are written in C. CC8E can
print a warning for each operator function that is called (option -wQ).

6.5 Inline Assembly

The CC8E compiler supports inline assembly located inside a C function. There are some restrictions
compared to general assembly. First, it is only possible to CALL other functions. Second, GOTO is
restricted to labels inside the function.

#asm

73

CCB8E C Compiler B Knudsen Data

assenbly instructions
#endasm

Features:

e many assembly formats

* equ statements can be converted to variable definitions
« macro and conditional assembly capabilities

» call C functions and access C variables

e Cstyle comments is possible

e optional optimization

e optional automatic bank updating

Inline assembly is NOT C statements, but are executed in between the C statements. It is not
recommended to write the code like this:

i f (a==b)
#asm
nop // this is not a C statenent (by definition)
#endasm

a=0;, // THHSis the conditional statenent!!!

Inline assembly supports DW. This can be used to insert data or special instructions. CC8E will assume
that the data inserted are instructions, but will not interpret or know the action performed. Bank selection
bits are assumed to be undefined when finishing executing DW instructions.

#asm

DW OxFFFF ; any data or instruction (2 bytes stored)
DW OxFFFF, 0, 0xC000 ; multiple words

#endasm

Assembly instructions are not case sensitive. However, variables and symbols require the right lower or
upper case on each letter.

cl rwdt

Nop
NOP

The supported operand formats are:

k EXPR

f,a VAR + EXPR, A

f,d,a VAR + EXPR, D, A

f,b,a VAR + EXPR, EXPR, A

fs,fd VAR + EXPR, VAR + EXPR

f,k VAR + EXPR, EXPR

a LABEL or FUNCTI ON_NAME

EXPR := [EXPR OP EXPR | (EXPR) | -EXPR]

EXPR := a valid C constant expression, plus assenbly extensions

Constant formats:

MOVLW 10 ; decimal radix is default
MOVLW OxFF ; hexadeci mal

MOVLW 0b010001 ; binary (C style)
MOVLW " A ; a character (C style)

74

CCB8E C Compiler B Knudsen Data

MOVLW . 31 ; deci mal const ant

MOVLW .31 + 20 - 1 ; plus and mnus are all owed
MOVLW H FF' ; hexadeci mal (radix 16)
MOVLW h' OFF

MOVLW B' 011001’ ; binary (radix 2)

MOVLW b' 1110. 1101

MOVLW D' 200" ; decimal (radix 10)

MOVLW d' 222"

MOVLW MAXNUMRAEXP ; defined by EQU or #define
; MOVLW 22h ; NOT al | owed

Note that the specification of access bank (,0) or banked access (,1) is OPTIONAL, and automatically
decided by the variable accessed. If this information is added, then the compiler checks that it is equal to
the access required by the variable. Variables residing at address 0-0x7F and 0xF80-0xFFF must use the
access bank. All other accesses must be banked.

decf ax,WO // load result into W ax in access bank
decf ax,W1 // load result into W ax in bank 0 .. 15
decf ax,W // load result into W inmplicit banked/accessbank

Formats when loading then result into the W register (implicit banked/accessbank):

decf ax,0 // load result into W
iorwf ax,w// load result into W
iorwf ax, W

Formats when writing the result back to the RAM register (implicit banked/accessbank):

decf ax

decf ax,1
iorwf ax,f
iorwf ax, F

Bit variables are accessed by the following formats (implicit banked/accessbank):

bcf Carry
bsf Zero_
bcf ax, B2 ; B2 defined by EQU or #define
bef ax, 1
bcf STATUS, Carry ; Carry is a bit variable

Arrays, structures and variables larger than 1 byte can be accessed by using an offset.

clrf a32 ; uns32 a32; [// 4 bytes
clrf a32+0

clrf a32+3

clrf tab+9 ; char tab[10];

; clrf tab-1 ; not all owed
Labels can start anywhere on the line:

goto LABEL4
LABEL1

- LABEL2
LABEL3:
LABEL4 nop

75

CCB8E C Compiler B Knudsen Data

nop
goto LABELZ2

Functions are called directly. A single unsigned 8 bit parameter can be transferred using the W register.

novl w 10
call f1 ; equivalent to f1(10);
rcall f1 ; equivalent to f1(10);

The ONLY way to transfer multiple parameters (and parameters different from 8 bit) is to end assembly
mode, use C syntax and restart assembly mode again.

#endasm
func(a, 10, e);
#asm

The EQU statement can be used for defining constants. Assembly blocks containing EQU's only can be
put outside the functions. Note that Equ constants can only be accessed in assembly mode. Constants
defined by #define can be used both in C and assembly mode.

#asm

BO equ 0

B7 equ 7
MAXNUMR 4 EXP equ OxFF
#endasm

Equ can also be used to define variable addresses. However, the compiler does not know the difference
between an Equ address and an Equ constant until it is used by an instruction. When an Equ symbol is
used as a variable, that location is disabled for use by other variables. The symbol then changes from an
Equ symbol to a variable symbol and is made available in C mode also. There is a slight danger in this
logic. DO NOT USE a series of Equ's to define an array. If one of the locations are not read or written
directly, the compiler will not know that it is a part of an array and may use it for other purposes. Reading
and writing through FSR and INDF is not used to transform equ definitions. Therefore, define arrays by
using C syntax (or #pragma char).

/1l enable equ to variable transfornation
#pragma asnmRvar 1

Al equ 0x20

CLRF Al
;A1 is changed froman equ constant to a char variable

The following address operations are possible when the variable (structure/array) is set to a fixed address:

char tab[5] @ 0x110;
struct { char x; char y; } stx @ 0x120;
#asm

MOVLW t ab

MOVLW &t ab[1]

MOVLW LOW &t abl 2]

MOVLW HI GH &t ab[2]
MOVLW UPPER &t abl[2]
MOVLW HI GH (&t ab[2] + 2)
MOVLW HI GH (&st x.y)
MOVLW &st x. y

76

CCB8E C Compiler B Knudsen Data

MOVLW &STATUS
#endasm

Comments types allowed in assembly mode are:

NOP ; a conmment

NOP /1l C style coments are also valid

/*

CLRWDT

NOP /* nested C style comments are also valid */
*/

Conditional assembly is allowed. However, the C style syntax has to be used.

#i f def SYMBOLA
nop

#el se

cl rwdt

#endi f

Most preprocessor statements can be used in assembly mode:
#pragma return[] = "Hello"

C style macros can contain assembly instructions, and also conditional statements. Note that the compiler
does not check the contents of a macro when it is defined.

#define UUA(a, b)\
cl rwdt\

movlw a \

#if a == 10 \

nop \
#endi f \
clrf b

UUA(10, ax)
UUA(9, PORTA)

Note that labels inside a macro often need to be supplied as a parameter if the macro is used more than
once. Also note that there should always be a backslash '\' after a #endasm in a macro to avoid

error messages when this macro is expanded in the C code. This applies to all preprocessor statements
inside a macro.

#defi ne wait X(uSec, LBM \

#asm \
LBM \
NOP \
NOP \
DECFSZ uSec, 1 \
GOTO LBM \
#endasm \

wai t X(i, LL1);
wai t X(i, LL2);

The compiler can optimize and perform bank updating in assembly mode. This does not happen

automatically, but has to be switched on in the source code. It is normally safe to switch on optimization
and bank updating. Instructions updating the bank register are removed before the compiler insert new

77

CCB8E C Compiler B Knudsen Data

instructions. If the assembly contains critical timing, then the settings should be left off, at least in local
regions.

/1 default |ocal assenbly settings are b- o-
#pragm asm default b+ o+ // change default settings

#asm /1 using default |ocal settings
#endasm

#asm b- o- /1 define |local settings

#pragm asm o+ // change setting in assenbly nobde
#endasm /1 end current |ocal settings

Interpretation:

o+ : current optimzation is perforned in assenbly nobde

0- : no optimization in assenbly node
b+ : current bank bit updating is performed in assenbly node
b- : no bank bit update in assenbly node

Note that b+ o+ means that updating is performed if the current setting in C mode is on. Updating is
NOT performed if it is switched off in the C code when assembly mode starts. The command line options
-b, -u will switch updating off globally. The corresponding source code settings are then ignored.

Direct coded instructions

The file “hexcodes.h” contains C macros that allow direct coding of instructions.

Note that direct coded instructions are different from inline assembly seen from the compiler. The
compiler will view the instruction codes as values only and not as instructions. All high level properties
are lost. The compiler will reset optimization, bank updating, etc. after a DW statement.

Example usage:
#i ncl ude "hexcodes. h"

// 1. In DWstatenments:

#asm

DW __ SLEEP /1 Enter sleep node

DW __ MOWAF(__ | NDFO, 0) /1 Store indirectly

DW ___ANDLW 0x80) /[l W= W& 0x80;

DW _DECF(__FSROL, F,0) /1 Decrenent FSROL (access bank)

DW __ CLRF(OxFF, 1) /1 Clear ram (banked access)
DW __ BCF(__STATUS, Carry,0) // Clear Carry bit

DW _ BRA(3) /1 Branch 3 instruction words forward
DW _ BRA(0) /1 Branch O (= no operation)

DW _ BRA(-1) /1 Branch -1 backward (infinite | oop)
DW __ BC(-2) /1 Branch on Carry 2 words backwards
DW __ MOVFF(__INDFO, _ INDF1l) // Move byte indirectly

DW __ LFSR(0, 0x130) /1 Load 12 bit constant into FSRO

DW __ GOrQ(0) /! Goto byte address 0O

#endasm

// 2. In cdata statenments:
#pragma cdata[1] = _ GOTQ(Ox3FF)

78

CCB8E C Compiler B Knudsen Data

Generating single instructions using C statements

The compiler will normally generate single instructions if the C statements are simple. Remember to
inspect the generated assembly file if the application algorithm depends upon a precisely defined
instruction sequence. The following example shows how to generate single instructions from C code.

nop(); /1 NOP

f =W /1 MOV f

f =0; /1 CLRF f
w=rf - W /1 SUBWF f, W
f=f- W /1 SUBWF f
W= 1f - 1; [/l DECF f,W
f =f - 1; /1 DECF f
w=r~Ff | W [l 1TORW f, W
f=f] W /1 1 ORWF f
wW=1f &W /1 ANDWF f, W
f=f&W /1 ANDWF f
w=f ~w /1 XORWF f, W
f=frWwW /1 XORWF f
w=1f + W /1 ADDWF f, W
f =f + W /1 ADDWF f
W= f; /1 MOVF f, W
W= f ~ 255; /] COVF f, W
f = f ~ 255 /1 COWF f
W= f + 1; /1 INCF f, W
f =f + 1; /1 1 NCF f
W= decsz(i); [// DECFSZ f,W
f = decsz(i); // DECFSZ f
W= rr(f); /1 RRCF f, W
f =rr(f); /1l RRCF f
W= rl(f); /[l RLCF f, W
fo=rl(f); /1 RLCF f
W= swap(f); /1 SWAPF f, W
f = swap(f); /1 SWAPF f
W= incsz(i); [/ INCFSZ f, W
f =incsz(i); [/ INCFSZ f
b = 0; // BCF f,b

b = 1; // BSF f,b

b = !b; // BTG f,b
bt sc(b); /1 BTESC f, Db
bt ss(b); /1 BTFSS f,Db
sl eep(); /'l SLEEP
clrwdt (); /1 CLRWDT
return 5; /1 RETLW 5
s1(); /1 CALL s1i
goto X; /1 GOTO X

W = 45; /1 MOVLW 45
W= W] 23; /1 1 ORLW 23
W= W& 53; /1 ANDLW 53
W= Wn 12; /] XORLW 12

W= 33 + W // ADDLW 33
W= 33 - W /1 SUBLW 33
return; /1 RETURN
retint(); /1 RETFIE

W= addWFC(f); // ADDWC f, W
f = addWFC(f); // ADDWC f
W= subWFB(f); // SUBWB f, W

79

CCB8E C Compiler

B Knudsen Data

f = subWrB(f);
W = subFWB(f);
f = subFWB(f);
W= rrnc(f);
f =rrnc(f);
W= rlnc(f);
f =rlnc(f);
W = decsnz(i);
f = decsnz(i);
W= incsnz(i);
f = incsnz(i);
f = negate(f);
W = decadj (W;
mul tiply(f);
mul tiply(50);
skipl f EQ(f);
ski pl fLT(f);
skipl fGT(f);

ski pl f Zero(f);
pushSt ack();
popSt ack() ;
sof t Reset () ;

t abl eRead();

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
11
/1
/1
/1
/1
/1
/1

t abl eReadl nc();//
t abl eReadDec();//

t abl eReadPrel nc();

tableWite();

tabl eWitePrelnc();

SUBWFB f
SUBFWB f, W
SUBFWB f
RRNCF f, W
RRNCF f
RLNCF f, W
RLNCF f
DCFSNZ f, W
DCFSNZ f

| NFSNZ f, W
| NFSNZ f
NEG- f

DAW

MULWF f
MJLLW 50
CPFSEQ f
CPFSLT f
CPFSGT f
TSTFSZ f
PUSH

POP

RESET
TBLRD *
TBLRD *+
TBLRD *-

/1 TBLRD +*

/1 TBLWI *
tableWitelnc();// TBLW *+
tabl eWiteDec();// TBLWI *-

6.6 Optimizing the Code

The CC8E compiler contains an advanced code generator which is designed to generate compact code.
For example when comparing a 32 bit unsigned variable with a 32 bit constant, this normally requires 12
instructions. When comparing a 32 bit variable with 0, this count is reduced to 5. The code generator

detects and takes advantage of similar situations to enable compact code.

/1 TBLWI +*

Most of the code is generated inline, even multiplication and division. However, if many similar and
demanding math operations have to be performed, then it is recommended to include a math library.

Optimized Syntax
Testing multiple bits of 16 bit variables or greater:

unsl1l6 x;
if (x & OxFO)

if (1(x & 0x30Q))

if ((x & OxFO00)

0x300)

if ((x & Ox7F00) < 0x4000)

Testing single bits using the '&' operator:

if (a & 0x10)

if (!(a & 0x80))
if ((alé & 0x200)

/1 BTFSC/ BTFSS a, 4
/1 BTFSS/ BTFSC a, 7
== 0) [// BTFSS/ BTFSC al6+1, 1

80

CCB8E C Compiler B Knudsen Data

Peephole optimization

Peephole optimizing is done in a separate compiler pass which removes superfluous instructions or
rewrite the code by using other instructions. This optimization can be switched off by the -u command
line option. The optimization steps are:

1) redirect goto to goto

2) remove superfluous gotos

3) replace goto by skip instructions

4) replace INCF and DECF by INCFSZ and DECFSZ
5) remove instructions that affects the zero- flag only.
6) remove superfluous updating of PAO and PA1

7) remove other superfluous instructions

8) remove superfluous loading of the W register

9) to be defined

10) inserts TSTFSZ, CPFSEQ

11) inserts branch

NOTE: Optimization can also be switched on or off in a local region. Please refer to the #pragma
optimize statement for more details.

6.7 Linker Support

IMPORTANT NOTE: Support for MPLINK has been terminated. MPLAB X 5.35 is the last version
that includes mpasmx/mplink. However, devices supported by mplink can be used with newer MPLAB X
versions if a copy of the mpasmx package is stored on the computer.

CCB8E supports the relocatable assembly format defined by Microchip. This means that MPLINK can be
used to link code modules generated by CC8E, including MPASM assembly modules. There are many
details to be aware of. It is therefore recommended to read this file carefully. The important issues are
related to:

» external functions and variables
e ram bank updating

» call level checking

e MPLINK script files

The command line option "-rsc' (or -r2' or '-r') makes CC8E generate relocatable assembly. This file is
then assembled by MPASM and linked together with other C and assembly modules by MPLINK. This
can automated by using 'make' to build the whole application in several stages.

NOTE that if you need the application program to be as compact as possible, then it is recommended to
use only ONE C module. Source code modularity is obtained by using many C files and include these
in the main C module by using #include.

Command line options:
-rsc[=<file.lkr>] : generate rel ocatable assenbly and use separate
| ogi cal sections for the interrupt routines. Al so generate or update
the conplete linker script file. If the Iinker script file nane is
not specified, then the C nodule name will be used with the extension
".Ikr'. The script file will only be generated when conpiling the
nodul e cont ai ni ng mai n().

-r2[=][<file.lkr>] : generate relocatable assenbly with separate

| ogi cal sections for the interrupt routines. A partial |inker script
file (containing dynam c definitions of page and intserv8 or

i ntservl8) is generated and should be included in the main |inker

81

CCB8E C Compiler B Knudsen Data

script file. If the partial linker script file name is not specified,
then the C nodule nane will be used with the extension '.Ilkr'.

-r . generate relocatable assenbly wi thout separate |ogical sections
for the interrupt routines. NO linker script file is generated.

-rx : make variables static by default

External assembler options
-x<file>: -x"C \Program Fil es\ M crochi p\ MPASM Sui t e\ mnpasmni n. exe"
- X<option>:. assenbler option: -X/q (all options nust be separate)

Assembly file options (normally not used):
-rb<N> : name on RAM bank 0 is BANK<N>, default BANKO
-ro<N> : add of fset <N> when generating |ocal variable block nane

Using MPLINK or a single module

Currently it is best to use a single C module for several reasons. MPLINK support was mainly offered to
enable asm modules to be added.

Limitations when using MPLINK:

1. Asm mode debugging only (C source code appear as comments)

2. Multiple C modules do not allow the static local variable stack to be calculated for the whole
program, meaning that much more RAM space will be used for local variables.

3. Call level checking must be done manually

4. Computed goto will be slower because the compiler cannot check 256 byte address boundary
crossing.

5. Inefficient RAM bank updating, meaning mode code.

Reasons for using multiple modules are often:

1. Faster build: However, CC8E is incredible fast.

2. Module separation: However, sufficient module separation can be achieved by using multiple C files.
3. Asm modules: Inline ASM is supported by CC8E.

C modules can be merged into a single module and still be viewed as single modules. Such C
modules can be used in several projects without modification. The procedure is as follows:

1. Include the “separate modules” into the main module:

#i ncl ude "nodul el.c"
#i ncl ude "nodul e2.c"

Il ..

#i ncl ude "nodul eN. c"
Il ..

void main(void) { .. }

2. Each merged “module” includes the required header files. This can be header files specific for the
“module” or common header files:

#i ncl ude "header 1. h"
#i ncl ude "header 2. h"
Il ..

#i ncl ude "headerN. h"
/1

/1 nmodul e functions

82

CCB8E C Compiler B Knudsen Data

3. If the same header file is included in more than one “module”, it will be required to prevent compiling
the same header file definitions more than once. This is done by using the following header file framing:

#i fndef _HEADER N Synbol /1 the first header file line

#defi ne _HEADER N _Synbol /1 conpile this Iine once only
1.

/'l header definitions as required

/1

#endif /1 the |l ast header file |ine

Restrictions on the demo edition
There are some restrictions when using relocatable assembly on the CC8E DEMO:

1. Asingle demo C module is possible, plus many assembly modules.

2. The demo C module can call EXTERN functions and use extern variables defined in assembly
modules.

3. The demo C module is NOT allowed to export extern functions or variables.

4. main() must be defined in the demo C module. The interrupt routines should preferably also be
defined in the demo C module.

Variables and pointers

Variables defined in other module can be accessed. CC8E needs to know the type, and this is done by
adding 'extern’ in front of a variable definition.

extern char a;

All global variables that are not 'static' are made available for other modules automatically. CC8E inserts
'GLOBAL' statements in the generated assembly file.

CCS8E will generate a ' MOVLW LOW (var_name+<offset>)' when using the address operators
'‘&var_name'.

Global bit variables are a challenge. It is recommended to first define a char variable and then use 'bit bx
@ ch.0;". Otherwise CCB8E will define a global char variable with random name. This name have the
format '_Ghit<X><X>" where <X> is (more or less) random selected letters. This variable is reserved by
a RES statement and used in the assembly file when generating relocatable assembly.

bit bl;
bl =0; // BCF _GhitQB+0,0

The variable file (*.var) is slightly modified when generating relocatable assembly. Note that most
addresses stated in the variable file are reallocated by MPLINK.

Option -rx will make variables static by default. This means that variables will not be visible outside the
module unless 'extern’ is added in front of the type definition. Note that option -rx requires that an extern
pointer definition need to be stated before the allocation of the pointer.

extern char *px; [// definition only, no allocation of space
char *px; /'l space is allocated for the pointer

IMPORTANT: 'const' data cannot be 'extern' because MPLINK does not support the const access

functions generated by CC8E. Identifiers with the 'const’ modifier will not be made visible outside the
module. This also applies to struct objects with const pointers.

83

CCB8E C Compiler B Knudsen Data

IMPORTANT: Allocation of pointers is slightly different when using relocatable assembly. The main
reason for this is that CC8E cannot trace how addresses are assigned to pointers between different
modules. There is no change on local and static pointers. An extern visible pointer without a size modifier
(sizel/size2) will be 16 bit wide.

An extern visible pointer with the sizel modifier will access addresses from 0 - 255. An error is printed if
the pointer is assigned higher addresses. However, it is possible to force an extern 8 bit pointer to access a
specific bank by a pragma statement:

extern sizel char *px;
#pragma assume *px in ranbank 2

Note that 8 bit pointers in a struct can only access addresses from 0 - 255, even if the struct is static or
local.

Local variables

CCB8E uses a different naming strategy on local variables when generating relocatable assembly. CC8E
reserves a continuous block in each ram bank (or access bank) and use this name when accessing local
variables.

IMPORTANT RESTRICTION: The main() routine, interrupt service routines and all extern functions are
defined as independent call trees or paths. A function called from two independent call paths cannot
contain local variables or parameters because address sharing cannot be computed in advance. CC8E
detects this and generates an error message.

The names of the local RAM blocks are _LcRA, LcRB, etc. The last letter is related to the RAM bank
and the second last to the module name. Adding option -rol will for example change name _LcAA to
_LcBA. This can be used if there is a collision between local variable block defined in separate C
modules. MPLINK detects such collisions.

-ro<N> : add of fset <N> when generating |ocal variable block nane

Local variables for external available functions are allocated separately, one block for each extern
function. This often means inefficiently use of RAM. It is therefore recommended to use 'extern’ only on
those functions that have to be extern, and use few local variables in the extern functions. Also consider
using global variables.

Header files

It is recommended to make common header files that contain global definitions that are included in all C
modules. Such files can contain definitions (#define), 10 variable names, etc.

Using RAM banks
RAM bank definitions only apply to devices with RAM located in more than one bank.

Note that the RAM bank of ALL variables has to be known (defined) during compilation. Otherwise the
bank bit updating will not be correct. The bank is defined by using "#pragma rambank' between the
variable definition statements, also for ‘extern’ variables. An alternative is to use the bank type modifier
(bank0..bank3, shrBank).

#pragma ranmbank 0
char a, b;

#pragma ranbank 1
extern char arrayl[10];

84

CCB8E C Compiler B Knudsen Data

#pragma ranbank -
extern char ex; /] access RAM

Bank bit updating

CCB8E use an advanced algorithm to update the bank selection bits. However, it is not possible to trace
calls to external functions. Therefore, calling an external function or allowing incoming calls makes
CCB8E assume that the bank bits are undefined. This often means that more code compared to the optimal
bank bit update strategy.

It is therefore recommended to only use ‘extern’ on those functions that have to be extern, and keep the
number of calls between modules to a minimum.

Functions

Functions residing in other modules can be called. Functions defined can be called from other modules
(also from assembly modules).

NOTE that ALL functions that are called from another module need an ‘extern’ first. This is an extra
requirement that is optional in C. The reason is that the compiler needs to decide the strategy on bank bit
updating and local variables allocation. It is most efficient to use FEW extern functions.

extern void funcl(void); // defined in another nodule
extern void func2(void) { .. } [/ can be called fromanother nodul e

NOTE that extern functions can only have a single unsigned 8 bit parameter which is transferred in W
(not const/pointer/bit). This is because local storage information is not shared between modules. The
return value cannot be larger than 8 bit for the same reason (bit values are returned in Carry).

Supported extern function parameter types: char, uns8
Supported extern function return types: char, uns8, bit

CCB8E inserts a 'GLOBAL <function>" in the generated assembly code for all external available functions.
'EXTERN <function>'" is inserted for functions defined in other modules.

If the C module contains main(), then a 'goto main' is inserted in the STARTUP section.

Using code sections

It is possible to use #pragma origin and #pragma cdata when the compiler knows the section the
following code should be placed in. The compiler automatically knows the STARTUP, ISERVERS,
ISERVER18 and PROG sections. In addition it is possible to define sections manually in the C file. These
definitions will also automatically appear in the script file when using the -rsc option.

#pragm sectionDef |DLOC:idl ocs 0x200000 - 0x200007 PROTECTED
#pragm sectionDef CONFI GS: config 0x300000 - 0x30000D PROTECTED
#pragm secti onDef EEPROM eedata OxFO0000 - OxFOOOFF PROTECTED
#pragm sectionDef APPSEC. appdef1 0x1000 - O0x102F

#pragma sectionDef PROG

Note the difference between using:

#pragma origin 0x1000 => generates: APPSEC CODE 0x1000
and

#pragma origin SECTI ON(APPSEC) => generates: APPSEC CODE

85

CCB8E C Compiler B Knudsen Data

The first origin says "from the start of the APPSEC section”, while the last origin says "somewhere" in
the APPSEC section". Locating code from a specific address is sometimes useful, but note that MPLINK
does not allow the above origin statements to be mixed for code belonging to the same section.

If the sections starting at address 0x200000 and 0x300000 are not defined, then the compiler will
automatically use section names IDLOCS and CONFIG. However, it is recommended to use the above
definitions in the C file, especially when using the -rsc option.

The compiler estimate the current hex address, and use this to detect when to insert the ISERVERS and
ISERVER18 sections when using the '-rsc’ or '-r2' options. Sometimes these sections should not be
inserted. This problem will occur infrequently and is easily detected because MPLINK will report the
conflict. This problem can be solved by inserting the following statements at the right place:

#pragma sectionDef PROG
#pragma origi n SECTI ON(PROG)

NOTE: It is recommended to use code sections of maximum 64k byte, without crossing a 64k boundary
((START & 0xFF0000) should be equal (END & 0xFF0000)).

Interrupts on the enhanced PIC18 core devices

The compiler is able to generate relocatable asm for the enhanced PIC18 core in order to use MPLINK to
generate the final HEX and COFF files. This description applies for the available interrupt setups, both
traditional types and interrupt vector table.

It is recommended to use option -rsc which allows the compiler to generate and adjust the linker script
file. Option -r2 will only work when using traditional high and low priority interrupt located at address
0x8 and 0x18. Option -r will require much manual setup and is not recommended

For option -rsc it is required to locate main(), the interrupt service routines and the interrupt vector table
in the same module. The compiler will generate and maintain a specific SECTION for this module in the
linker script file. Example:

CODEPAGE NAME=i page START=0x200 END=0x767 /1 CCDFL
gECTI ON NAME=I PROG ROVEi page /1 main() and interrupt

If SECTION IPAGE does not start at address 0x8 (default), then it is required to use #pragma origin
VALUE in the beginning of the module to tell the compiler where to locate this SECTION.

The remaining modules generated by the compiler (and optionally the assembler) will be located in
another module. The compiler will generate and adjust the start of this section. Example:

CODEPAGE NAME=page START=0x768 END=0x3FFF /1 CCDFL
éECTIO\l NAVE=PROG ROVEpage /1 Code space - CCDFL

It is recommended to let the compiler generate the linker script file at the first successful compilation of
the main module. Additional SECTION definitions can be stated in the main module. When the linker
script file has been generated (by the compiler) it is also possible to modify this file manually.

It is allowed to define special purpose SECTIONS before the IPROG section and after the PROG section.
The compiler will read the linker script file when compiling the main module and adjust the IPROG and
PROG sections according any manual extra definitions. An error message is generated if the manual
sections overlap with the main module (IPROG).

86

CCB8E C Compiler B Knudsen Data

Interrupts on the original PIC18 core devices

CCB8E requires that the interrupt functions are located at address 8 and 0x18. Writing the interrupt service
routine in C using MPLINK will require some care.

The best method is to use SEPARATE logical sections in the linker script file for the interrupt service
routines. This is a robust solution. CC8E will generate a full (or partial) script file to avoid manual
address calculation. Node that #pragma origin 0x8 and 0x18 must be used for the interrupt routines.

It is also possible to design an assembly module containing the interrupt service routines. Information on
how to do this should be found in the MPASM/MPLINK documentation.

Call level checking

CCS8E will normally check that the call level is not exceeded. This is only partially possible when using
MPLINK. CC8E can ONLY check the current module, NOT the whole linked application.

When calling an external function from the C code, CC8E will assume that the external call is one level
deep. This checking is sometimes enough, especially if all C code is put in one module, and the assembly
code modules are called from well known stack levels. Calling C function from assembly will require
manual analysis of the call level.

Therefore, careful verification of the call structure is required to avoid program crash when using too
deep calls (max 31 levels). The compiler generated *.fcs files can provide information for this checking.

Calls to external functions is written in the *.fcs file. External function calls are marked [EXTERN].

Computed goto

CCS8E will always use the long format when generating code for skip(). It is not possible to use the -GS
option in combination with relocatable assembly.

Recommendations when using MPLINK

1. Use as few C modules as possible because of:

a) inefficient bank bit updating between modules

b) local variable space cannot be reused between modules

c) only asingle unsigned 8 bit parameter in calls between modules
d) only 8 or 1 bit return values between modules

2. Use definition header files that are shared between modules. Include the shared definition in all C
modules to enable consistency checking.

a) variables: add bank information
/1 nodul el.c
ext ern shrBank char b;
#defi ne ARRAY_SI ZE 10
extern bankO char array[ARRAY_SI ZE] ;
/1 rmodul e3. asm
extern bankl char mulcnd, mulplr, Hbyte, L_byte;

b) constants, definitions, enumerations and type information
#defi ne Myd obal Def 1

enum { S1 = 10, S2, S3, $4 S5 };

/1 nanes assigned to port pins

#pragma bit in @ PORTB.0

#pragm bit out @ PORTB.1

87

CCB8E C Compiler B Knudsen Data

3. Define bit variables to overlap with a char variable

/* extern */ char nyBits;

bit bl @nyBits.O0;

bit b2 @nyBits. 1;

/1 use 'extern char nyBits;' for global bits and put the
/1 definitions in a shared header file. Mve definition
/1 'char nyBits;' to one of the nodules.

4. It is recommended to use the -rsc option to enable the compiler to AUTOMATICALLY generate and
later update the linker script.

5. Set up a 'makefile’ to enable automatic (re)compilation and linking. Follow the guidelines when using
MPLAB. Edit and use the option "+reloc.inc' when compiling C modules.

6. Do the final call level checking manually

7. Update conventions in assembly functions called from C modules: The bank selection bits should be
updated in the beginning of assembly functions that are called from C.

MPASM

Note that MPASM will generate its own warnings and messages. These should normally be ignored.
MPASM do not know about the automatic bank bit updating and will display messages about this.
MPASM have generated the message if the asm file extension is used in the message.

Program execution tracing will always use the assembly file as source when using MPLINK. MPASM
can generate object code from assembly modules. There are some restrictions and additions when using
relocatable modules compared to using a single assembly module.

CCB8E does not support the object code directly, but generates relocatable assembly that MPASM use to
generate the object file. MPASM is started from within the CC8E so that no extra command is required
(only the right command line options).

Case Sensitivity option in MPASM is by default On, and should remain On because C use case dependent
identifiers.

Example options to start MPASM at the end of compilation;
-x"C:\Program Fil es (x86)\ M crochi p\ MPLABX\ v4. 01\ npasmx\ npasnx. exe"
-x"C:\ Program Fi |l es\ M cr ochi p\ MPASM Sui t e\ rpasmn n. exe"

Options starting with -X are forwarded to the assembler:
-Xo . generate rel ocatabl e object code
-Xq . assenbl er quiet node

If the CC8E error file option (-F) is missing, CC8E will read the error file generated by MPASM and
write the error and warnings found there to the screen and the output file (*.occ). The error file is
then deleted.

If the CC8E error file option (-F) is present, CC8E will write error and warnings to the error file (*.err)
and append the error and warnings generated by MPASM at the end of this file.

The MPLINK script file

The compiler is able to generate the FULL linker script file. This is done when using command line
option -rsc[=<file.lkr>]. The compiler will automatically do the following when the C module contains
interrupt routine(s):

88

CCB8E C Compiler B Knudsen Data

a) Generate or update a complete script. If the file exists initially, then it should preferably contain an
empty line. The script file will only be generated when compiling the module containing main().

b) Add, remove and adjust definitions that are maintained by the compiler.

c) Forward code section definitions to the script file, and allow the definitions to be used in #pragma
origin statements etc.:

#pragm sectionDef <secl D>[:<secDef> <start> - <l ast> [<PROTECTED>]]

#pragma sectionDef |DLOC:idlocs 0x200000 - 0x200007 PROTECTED
#pragm sectionDef CONFI GS: config 0x300000 - 0x30000D PROTECTED
#pragm secti onDef EEPROM eedata OxFO0000 - OxFOOOFF PROTECTED
#pragm sectionDef APPSEC. appdef1 0x1000 - Ox102F

#pragma sectionDef PROG

d) Code definition will be adjusted automatically to ensure that there are no overlapping.

e) When a variable is located at a fixed address, the compiler will automatically EXCLUDE this address
from the default bank definition in the script file. The largest free region in the bank will be defined, and
made available for allocation by MPLINK. It is important that the main C module knows all fixed RAM
definitions. Otherwise it is required to make a manual definition in the script file to exclude "unknown"

locations from normal allocation.

It is also possible to make the linker script file manually, although this should normally not be preferred.
MICROCHIP supplies sample linker script files for each device with the file extension 'lkr' (look in the
MPLAB directory). When making a linker script file for a specific project, this file can be copied and
edited to suit the needs of CC8E.

The sample MPLINK script files must be changed slightly if the interrupt function is written in C. The
reason is that the interrupt functions must start at addresses 8 and 0x18 when using CC8E. It could be
possible to use a vector at address 8 / 0x18, but this slows down interrupt response.

CHANGE 1: Interrupt routine in C WITH a separate logical section. CC8E generates a partial script file
when using the -r2 command line option (or -r2[=]<file.lkr>). This file is written if (and only if) CC8E
compiles a module with an interrupt service routine. The generated script file may look like:

CODEPAGE NAME=i ntserv18 START=0x18 END=0x31
CCDEPAGE NAME=page START=0x32 END=0x7FFF

The required change in the main script file is then:
| NCLUDE nodul el. | kr /1l change to right nodul e/script file nane
CHANGE 2: Interrupt routine in C WITHOUT a separate logical section. Example change:

CODEPACGE NAME=vectors START=0x0 END=0x7 PROTECTED
/1 NEW VALUE Aoooo.

CODEPAGE NAME=page START=0x8 END=0x7FFF
/1 NEW VALUE Aooooo.

CHANGE 3: If INTERRUPTS are not used, then the first code page can start at address 4. Example
change:

89

CCB8E C Compiler B Knudsen Data

CCODEPAGE NAME=vectors START=0x0 END=0x3 PROTECTED
/1 NEW VALUE Aoooo.

CODEPAGE NAME=page START=0x4 END=0x7FFF
/1 NEW VALUE Aoooo.

CHANGE 4: LOGICAL sections must be added. Note that if a logical RAM section is missing, then the
variables that belongs to this section will be put in the "default™ section. MPLINK gives no error on
missing logical sections in the script file and the program will fail.

SECTI ON NAME=STARTUP ROMkvectors /1 Reset vector
SECTI ON NAME=I SERVER8 ROMVEi nt serv8 /1 High priority interrupt
SECTI ON NAME=I SERVER18 ROWEi ntserv18 // Low priority interrupt

SECTI ON NAVE=PROG ROVEpage /'l code space
SECTI ON NAME=| DLOCS ROWVEi dl ocs /1 1D locations
SECTI ON NAMVE=CONFI G ROVEconfi g /1 Configuration bits
SECTI ON NAME=EEDATA ROMEeedat a /1 EEPROM dat a
SECTI ON NAME=ACSRAM RAM=accessram // ACCESS RAM
SECTI ON NANME=BANKO RAMEgpr 0 /1 RAM bank 0
SECTI ON NAME=BANK1 RAME=gpr 1 /1 RAM bank 1
SECTI ON NAME=BANK2 RAMEgpr 2 /1 RAM bank 2
SECTI ON NAME=BANK3 RAME=gpr 3 /1 RAM bank 3
SECTI ON NAME=BANK4 RAM=gpr 4 /1 RAM bank 4
SECTI ON NAME=BANK5 RAM=gpr 5 /1 RAM bank 5
CHANGE 5: modifications when using 1ICD2:
CODEPAGE NAME=page START=. . END=0x 7 DBF
CODEPAGE NAME=debug START=0x7DC0 END=0X7FFF PROTECTED
DATABANK NAME=gpr 5 START=0x500 END=0x5F3
DATABANK NAMVE=dbgspr START=0x5F4 END=0x5FF PROTECTED

Logical code blocks:
STARTUP startvector
| SERVER8 | ogical section for the high priority interrupt
| SERVER18 | ogi cal section for the low priority interrupt

PROG code space
CONFI G config word
| DLOCS i d-1ocations

EEDATA EEPROM dat a

Logical RAM blocks:
ASCRAM Access RAM

BANKO bank 0
BANK1 bank 1
BANK2 bank 2
BANK3 bank 3
BANK4 bank 4
BANKS bank 5

BANK15 bank 15

Command line options:
Bank naming:
-rb0 . BANKO is the nane of the frist RAM bank (default)

90

CCB8E C Compiler B Knudsen Data

-rbl : BANK1 is the nanme of the frist RAM bank

Separate interrupt logical section (hamed ISERVERS8/ISERVER18)
-r2 : use nane of current nodul e (<nodul e>. | kr)
-r2[=]<file.lkr> : use defined file nane

Example with 2 modules
This example demonstrates the syntax only.

// LR R I I I I I I I R R I R I O R R I R I O R O

/] MODULELl. C

#pragma chi p Pl CL8F452
#i ncl ude "gl obdef 1. h"
#i ncl ude "int18xxx. H'

void _highPrioritylnt(void);

#pragma origin 0x8
i nterrupt highPrioritylntServer(void)

{
/1 W STATUS and BSR are saved to shadow registers
/1 handl e the interrupt
/1 8 code words available including call and RETFIE
_highPrioritylnt();
/1 restore W STATUS and BSR from shadow regi sters
#pragma f ast Mode

}

#pragma origin 0x18

interrupt lowPrioritylntServer(void)

{
/1 W STATUS and BSR are saved by the next nmcro
i nt_save_registers

/* NOTE : shadow registers are updated, but will be
overwritten in case of a high-priority interrupt.
Ther ef ore #pragnma fast Mode shoul d not be used on
lowpriority interrupts. */

/! save remai ning registers on demand (error/warning)

//unsl1l6 sv_FSRO = FSRO
/1unsl6 sv_FSR1 = FSRI;
/1unsl6 sv_FSR2 = FSR2;

/1 uns8 sv_PCLATH = PCLATH,
//uns8 sv_PCLATU = PCLATU,
//uns8 sv_PRODL = PRODL;
//uns8 sv_PRODH = PRODH
/1uns24 sv_TBLPTR = TBLPTR
/1uns8 sv_TABLAT = TABLAT,;

/1 handl e the interrupt
/1

/'l restore registers that are saved

91

CCB8E C Compiler B Knudsen Data

/1 FSRO = sv_FSRO;
/1 FSR1 = sv_FSRi;
/1 FSR2 = sv_FSR2;

/1 PCLATH = sv_PCLATH;
/1 PCLATU = sv_PCLATU;
/1 PRODL = sv_PRODL;
/1 PRODH = sv_PRODH;
/1 TBLPTR = sv_TBLPTR;
/1 TABLAT = sv_TABLAT;

int restore_registers // W STATUS and BSR
}

/* IMPORTANT : G EH A E or GEL should nornally NOT be
set or cleared in the interrupt routine. GEH G EL are
AUTOVATI CALLY cl eared on interrupt entry by the CPU
and set to 1 on exit (by RETFIE). Setting GEH/GEL to
1 inside the interrupt service routine will cause
nested interrupts if an interrupt is pending. Too deep
nesting may crash the program! */

void _highPrioritylnt(void)
/'l save registers on demand

/1 restore registers on denand

}
bankO char a;
bit bl, b2;

static char *ppm
shrBank char sr;

voi d sub(bankl char ax)

{

bankl char i; /* a local variable */

/* generate pul ses */
for (i =0; i <= ax+1; i++) {
out = 1;
nop2();
out = 0;
a ++; // increment global variable

}

voi d mai n(voi d)
{
PORTA
TRI SA

0b0010;
0b0001;

if (TO==1 &% PD==1/* power up */) {
clearRAM); // set all RAMto O
a = 5;
bl = 1;

92

CCB8E C Compiler B Knudsen Data

}

ppm = 0;

Sr ++;

a = reverse(sr); [/ call assenbly routine

b2 = !b1;
do {
if (in == 1)
br eak;
sub(a&3);

} while (a < 200);

// EE R R I I I R I I R I R I I I I R I I I S

/1 File: globdefl.h
// GLOBAL DEFI NI TIONS TO BE | NCLUDED I N ALL C MODULES

/1 nanes assigned to port pins
#pragma bit in @ PORTA O
#pragma bit out @ PORTA. 1

// nodul el. c
extern bankO char a;

/! nmodul e2. asm
extern bankl char result;
extern char reverse(char W;

LR R I S I I I I R R S I R I S R I I R R I I R
’

; MODULE2. ASM
#| NCLUDE " P18F452. | NC'

BANK1 UDATA

result RES 1 ; result holder

tnp RES 1 ; tenporary | ocation
count RES 1 ; |oop counter

GLOBAL result

PROG CCDE
reverse
GQ.OBAL reverse
nmovl b 1
movwf tnp
nmovl w 8

movwf count

| oop rrcf tnmp, F, 1
rlcf result, F, 1
decfsz count, F, 1
goto | oop
movf result, W 1
return

END

93

CCB8E C Compiler

B Knudsen Data

// khkhkkhkhkhkhkhhkhhhkhkhhhhhhhhhhhhhhhhhhhhhhhhdkhkhhhkhdkhkrkk rkk **x*%

Il File:

/1 This exanple linker script file is for

// However,

LI BPATH

CODEPAGE
CODEPAGE
| NCLUDE

18F452. LKR

use with the -r2 option.

it is reconmended to instead use the -rsc option to |et
/1 the conpiler automatically generate and update the whole script!

NAME=vect or s
NANME=i nt ser v8
nodul el. | kr

[l *** File 'nodul el. | kr'
/1l *** using option -r2,

CODEPAGE
CODEPAGE
CCODEPAGE
CCODEPAGE

ACCESSBANK

DATABANK
DATABANK
DATABANK
DATABANK
DATABANK
DATABANK

ACCESSBANK

SECTI ON
SECTI ON
SECTI ON
SECTI ON
SECTI ON
SECTI ON
SECTI ON

SECTI ON
SECTI ON
SECTI ON
SECTI ON
SECTI ON
SECTI ON
SECTI ON

NANME=i dl ocs
NAME=confi g
NAME=devi d

NAMVE=eedat a

and defi nes

START=0x0
START=0x8

END=0x7 PROTECTED
END=0x17

is generated by the conpil er when

START=0x200000
START=0x300000
START=0x3FFFFE
START=0xF00000

NAME=accessram START=0x0

NAMVE=gpr O
NAME=gpr 1
NAVE=gpr 2
NAVE=gpr 3
NANVE=gpr 4
NAMVE=gpr 5

NAMVE=accesssfr

NAME=STARTUP
NAME=I SERVER8
NAME=I SERVER18
NAME=PROG
NAME=| DLOCS
NAME=CONFI G
NAME=EEDATA

NAME=ACSRAM
NAME=BANKO
NAME=BANK1
NAME=BANK2
NAME=BANK3
NAME=BANK4
NAME=BANKS

6.8 The cdata Statement
The cdata statement stores 16 bit data in program memory.

START=0x80

START=0x100
START=0x200
START=0x300
START=0x400
START=0x500
START=0xF80

ROVEvect or s
ROVEI nt serv8
ROVEI nt serv18
ROMVEpage

ROMVEi dl ocs
ROVEconfi g
ROVEeedat a

RAM=accessram
RAM=gpr O
RAM=gpr 1
RAM=gpr 2
RAM=gpr 3
RAM=gpr 4
RAM=gpr 5

/1
11
11
/1
/1
/1
/1

/1
/1
/1
/1
11
/1
/1

"intservl8' and 'page'.

END=0x200007 PROTECTED
END=0x30000D PROTECTED
END=0x3FFFFF PROTECTED
END=0xFOOOFF PROTECTED

END=0x7F

END=0xFF

END=0x1FF

END=0x2FF

END=0x3FF

END=0x4FF

END=0x5FF

END=0xFFF PROTECTED

Reset vector

H gh priority interrupt
Low priority interrupt
code space

ID | ocations
Configuration bits |oc.
EEPROM dat a

ACCESS RAM
RAM bank
RAM bank
RAM bank
RAM bank
RAM bank
RAM bank

gabhwNEFO

NOTE 1: cdata[] can currently not be used with relocatable assembly. When using MPLINK, such data
statements can be put in an assembly module.

NOTE 2: Constant data should normally be stored using the ‘const’ type modifier. However, cdata[] is
useful for storing data and instructions at fixed addresses.

94

CCB8E C Compiler B Knudsen Data

NOTE 3: There is no check on validity of the inserted data or address. However, it is NOT possible to
overwrite program code and other cdata sections (except config, ID and EEPROM data). The data is
added at the end of the assembly and hex file in the same order as it is defined.

SYNTAX:
#pragm cdat a[ADDRESS] = <VXS>, .., <VXS>
#pragm cdat a[] = <VXS>, .., <VXS>
#pragma cdat a. | DENTI FI ER = <VXS>, .., <VXS>

ADDRESS: 24 bit byte address

VXS : < VALUE | EXPRESSION | STRI NG

VALUE: 0 .. OxFFFF

EXPRESSI ON: C constant expr. (i.e. 0x1000+(3*1234))
STRING "Valid C String\r\n\0\x24\x8\ xe\ xFF\ xff\i\\""

String translation: \xHH or \xH : hexadeci mal nunber
\0=>0 \1=>1 \2 => 2 \3 => 3 \4 =>4
\5=>5 \6=>6 \7 => 7 \a => 7 \b => 8
\'t == 9 \n => 10 \f => 12 \v => 11 \r => 13
\\ => the backsl ash character itself (0x5C)

\"o=> "t (0x22)
\xHH or \xH : hexadeci mal nunber
"\x1Conflict" is better witten as "\x1" "Conflict"

Strings are stored as 8 bit ASCII characters. The least significant 8 bits of each code word are filled first.
Strings are aligned on word addresses for each <VVXS>. However, alignment does not occur when writing
"abC" "def".

IDENTIFIER: any undefined identifier. It is converted to a macro identifier and set to the current cdata
word address. The purpose is to provide an automatic way to find the address of stored items.

Empty cdata statements can be used to set or read the current cdata address.
#pragma cdata] ADDRESS] // set current cdata address
#pragma cdata.IDENTIFIER // "get" current cdata address

Only cdata within the valid code space is counted when calculating the total number of code words.

Using the cdata statement
1. Defining special startup sequences:

#i ncl ude "hexcodes. h"
#pragma cdata[0] = _ NOP
#pragma reset Vector 2 /1 goto nain at byte address 2

2. Storing packed strings and other data

The cdata definitions should be put in a separate file and included in the beginning of the program. This
enables identifiers to be used in the program and checking to be performed.

#defi ne CDATA START 0x80
#pragm cdat a[CDATA START] // start of cdata bl ock
#pragma cdata[] = OxFFFF, 0x2000, 0x1000
#pragm cdat a[] 0x100, (10<<4) + 3456,\
10, 456, 10000

#define D8(1,h) (((l)&XxFF) + ((h)&XxFF)*256)

95

CCB8E C Compiler B Knudsen Data

#def i ne D32(x) X%0x10000, x/0x10000
#pragm cdata[] = D38(10,20), D32(10234543)

#pragma cdata. | DO
#pragma cdata. | D1
#pragma cdata. | D2

0x10, 200+3000
“Hel 1 o worl d\ 0"
“Anot her string\r\n" “nerged”

#pragm cdata.| D TABLE = I DO, IDl, I1D2 // store addresses
#pragma cdat a. CDATA _END /1 end of cdata bl ock
#pragma origin CDATA END // program code foll ow here

void wite(unsl6 strlD);

wite(lDl);
wite(lD2);

All cdata start addresses have to be decided manually. The setup could be as follows:

cdata definitions

C functions at addresses |ower than CDATA START
/1 #pragnma origin CDATA START /1 optional
#pragma origin CDATA END

C functions at addresses hi gher than CDATA END

The #pragma origin CDATA_START is not required, because data overlapping is detected automatically.
However, the compiler tells how many instructions are skipped for each origin statement. The cdata
words are not counted at this printout.

Statement #pragma origin CDATA_END allows functions to be stored right after the cdata area. This
origin statement is not required if all cdata are located at the end of the code space.

Preprocessor statements can be used for checking size during compilation:

#if CDATA END - CDATA START > 20
#error This is too nmuch
#endi f

Storing EEPROM data

EEPROM data can be put into the HEX file at addresses 0xF00000 and forward for transfer to the
internal EEPROM during programming of a device. Note that each cdata item is 16 bit wide, and will
thus define 2 EEPROM locations. The low 8 bit will be stored first (even addresses) then the high 8 bit
(odd addresses). The compiler does not know how much EEPROM space a device has.

#defi ne EEPROM START 0xF00000
#pragm cdat a] EEPROM _START] /1 start of cdata bl ock
#pragm cdata[] = OxFFFF, 1000 // 4 bytes EEPROM data

#define D8(I,h) (((1)&XxFF) + ((h)&xFF)*256))
#pragm cdata[] = D8(10, 20), D8(0, 2+5) // 4 bytes

Strings will be stored as a number of 2*8 bits when using cdata.

#pragma cdata[] = "Hello world!\0"

96

CCB8E C Compiler B Knudsen Data

7 DEBUGGING

Removing compilation errors is a simple task. The real challenge is to reveal the many application bugs.
ALWAYS remember to check the assembly file if the application program does not behave as expected.
Using a compiler does not remove the need for understanding assembly code.

Debugging methods

There are several ways of debugging the program:

1. Test (parts of) the program on a simulator. This allows full control of the input signals and thus exact
repetition of program execution. It is also possible to speed up testing to inspect long term behavior
and check out rare situations. How to do this is application dependent.

2. Use a hardware emulator. An emulator allows inspection and tracing of the internal program state
during execution in the normal application environment, including digital and analog electronics.

3. Insert application specific test-code and run the program on a prototype board. Then gradually
remove the extra code from the verified program parts. The key is to take small steps and restore the
program to a working state before doing the next change. The extra test code can consist of:

1) Code that produces patterns (square waves) on the output pins. This can be checked by an
oscilloscope.

2) Repetition of output sequences.

3) Extra delays or extra code to handle special situations.

The different debugging methods have their advantages and disadvantages. It can be efficient to switch
between several methods.

Compiler bugs

Compiler bugs are hard to detect, because they are not checked out until most other tests have failed.
(Silicon bugs can be even harder). Compiler bugs can often be removed by rewriting the code slightly, or,
depending on the type of bug, try:

1) #pragma optimize

2) #pragma updateBank

3) command line option; -u

4) command line option: -bu

5) command line option: -b

ALWAYS remember to report instances of compiler bugs to B Knudsen Data.

7.1 Compilation Errors

The compiler prints error messages when errors are detected. The error message is preceded by 2 lines of
source code and a marker line indicating where the compiler has located the error. The printing of source
and marker lines can be switched off by the -e command line option. The maximum number of errors
printed can also be altered. Setting the maximum to 12 lines is done by the command line option -E12.

The format of the error messages is:
Error <filenane> <line nunber>: <error nessage>

Some errors are fatal, and cause the compiler to stop immediately. Otherwise the compiling process
continues, but no output files are produced.

If there is a syntax error in a defined macro, then it may be difficult to decide what the problem actually
is. This is improved by printing extra error messages which points to the macro definition, and doing this
recursively when expanding nested macros.

NOTE: When an error is detected, the compiler deletes existing hex and assembly files produced by the
last successful compilation of the same source file.

97

CCB8E C Compiler B Knudsen Data

Error and warning details

The compiler prints a short description of the error message to the output screen and to the *.occ file, but
not to the *.err file. The *.occ file can then be opened and inspected.

-ed : do not print error details (disable)

-ew : do not print warning details (disable)

-eL : list error and warning details at the end

Some common compilation problems

* not enough variable space
Solution: Some redesign is required. The scope of local variables can be made more narrow. A better
overlapping strategy for global variables can be tried.

» the compiler is unable to generate code
Solution: Some of the C statements have to be rewritten, possibly using simpler statements.

* too much code generated

Solution: rewrite parts of the code. By checking the assembly file it may be possible to detect inefficient
code fragments. Rewriting by using the W register directly may sometimes reduce the code size.
Experience has shown that around 10% of the hex code can be removed by hand-optimizing the C code.
Optimal usage of RAM banks is important.

e too deep call level
Solution: rewrite the code. The compiler will automatically reduce the call level when functions are
called once only.

7.2 MPLAB Debugging Support

The CC8E compiler can be used inside the MPLAB environment (both MPLAB X and older MPLAB).
The COFF and COD file format for debugging purposes are supported. Two modes of source file
debugging are available:

a) Using the C source files (COFF and COD).

b) Using the generated assembly file as the source file (COD only). COFF file debugging in this mode
can be supported by generating an assembly file and send it to MPASM in order to generate the
COFF debugging file. The format of the assembly file can be changed in order to suit the debugging
tool. Take a look at the assembly file options. Some suggestions:

-Al+6+10 - AmiJ : sinmul ator |
-Al+6+6 - Am Js : sinmulator |1
- A6+8+12Jt . conpact |

- Am6+8+12Jt : conpact 11

Enabling the debugging file is done by a command line option:

- CF<f i | ename>: generate COFF debugging file using C source file(s). <filename> is optional. The
asm file option is also switched on.

- CC<f i | ename>: generate COD debugging file using C source file(s). <filename> is optional. The
asm file option is also switched on.

- CA<f i | ename>: generate COD debugging file using generated assembly file as source. <filename> is
optional. The asm file option is also switched on.

98

CCB8E C Compiler B Knudsen Data

Arrays:

COD FILE PROBLEM ONLY: Arrays and structures represent a slight challenge, because all variables
passed in the COD file are currently either char or bit types.

This is solved by adding new variables which appears during debugging:
char table[3]; --> table, /* offset 0 */
tabl e _el, /* offset 1 */
table e2 /* offset 2 */
struct {
char a;
char b;
} st; --> st, /* offset O (elenent "a') */
st_ el /* offset 1 (element 'b') */

This means that the name of a structure element is not visible when inspecting variables in a debugger.

ICD2 debugging

ICD2 debugging requires defining a symbol before the header file is compiled to avoid that the
application use reserved resources:

a) By a command line option:
- DI CD2_DEBUG

b) By using #define in combination with #pragma chip or #include:
#defi ne | CD2_DEBUG

#pragma chip PICI8F452 // or #include "18F452. H

7.3 Assert Statements
Assert statements allows messages to be passed to the simulator, emulator, etc.

Synt ax: #pragna assert [/] <type> <text field>
[/] : optional character

user defined assert

user defined emrul ator comrand

user defined printf
user defined | og conmand

<type> : a
e
f
I

<text field> undefined syntax, valid to the end of
the line. The Iine can be extended by a '\’
character |ike other preprocessor statenents.

#pragm assert /e text passed to the debugger
#pragm assert e text passed to the debugger
#pragm assert ; this assert command is ignored

NOTE 1: comments in the <text field> will not be removed, but passed to the debugger.

NOTE 2: Only ASCII characters are allowed in the assert text field. However, a backslash allows some
translation:

\0=>0, \1 =>1, \2=>2 \3=>3, \4 =14

\5 =>5 \6=>6, \7=>7, \a=>7, \b=>28

\t =>9, \n => 10, \v => 11, \f => 12, \r => 13

99

CCB8E C Compiler B Knudsen Data

USE OF MACROS: Macros can be used inside assert statements with some limitations. The macro
should cover the whole text field AND the <type> identifier (or none of them). Macros limited to a part
of the text field are not translated. Macros can be used to switch on and off a group of assert statements or
to define similar assert statements.

#defi ne COMMON ASSERT a text field
#define AA /

#pragma assert COVMON_ASSERT
#pragma assert AA a text field

Macro AA can also disable a group of assert statements if writing:
#define AA ;

#define XX /fa [/* this will NOT work */
#pragnma assert XX causes an error nessage

7.4 Debugging in Another Environment

Testing a program larger than 500-1000 instructions can be difficult. It is possible to debug parts of the
program in the Windows/MSDOS environment. Another C compiler has to be used for this purpose.
Using another environment has many advantages, like faster debugging, additional test code, use of
printf(), use of powerful debuggers, etc. The disadvantage is that some program rewriting is required.

All low level activity, like 10 read and write, have to be handled different. Conditional compilation is
recommended. This also allows additional test code to be easily included.

#i fdef SIM

/1 simulated sequence

/1 or test code (printf statenents, etc.)
#el se

/1 lowlevel PICricro code
#endi f

The following can be compiled and debugged without modifications:

General purpose RAM access

Bit operations (overlapping variables requires care)

Use of FSRx and INDFx (with some precautions)

Use of rl(), rr(), swap(), nop() and nop2(). Carry can be used together with rl() and rr(). Direct use of
Zero_ should be avoided.

5. Use of the W register

poppE

The recommended sequence is to:

1. Write the program for the actual PICmicro device.

2. Continue working until it can be compiled successfully.

3. Debug low-level modules separately by writing small test programs (i.e. for keyboard handling,
displays, I1C-bus 10, RT-clocks).

4. Add the necessary SIM code and definitions to the code. Debug (parts of) the program in another
environment. Writing alternative code for the low-level modules is possible.

5. Return to the PICmicro environment and compile with SIM switched off and continue debugging
using the actual chip.

100

CCB8E C Compiler B Knudsen Data

8 FILES PRODUCED

The compiler generates a hex file that can be used for programming the PICmicro devices directly. The
hex file normally contains code, data and optionally device configuration information. However, it is
possible to successfully compile a source file that contains data only. In this case the source code
typically will contain #pragma cdata statements with FLASH or EEPROM data.

The hex file is produced only there are no errors during compilation. The compiler may also produce
other files by setting some command line options:
« assembly, variable, list, function outline, debugging, preprocessor output and error files

8.1 Hex File

The default hex file format is INHX32. The format is changed by the -f command line option. The
INHX8M, INHX8S and INHX32 formats are:
: BBaaaaTT112233...CC

BB - nunber of data words of 8 bits, max 16
aaaa - hexadeci mal address (byte-address)
TT - type :

00 : normal objects
01 : end-of-file (: O0000001FF)
11 - 8 bits data word
CC - checksum - the sumof all bytes is zero.

The 16 bit format used by INHX16 is defined by:
: BBaaaaTT111122223333...CC

BB - nunber of data words of 16 bits, nax 8
aaaa - hexadeci nal address (of 16 bit words)
TT - type :

00 : normal objects
01 : end-of-file (: 00000001FF)
1111 - 16 bits data word
CC - checksum- the sumof all bytes is zero.

8.2 Assembly Output File

The compiler produces a complete assembly file. This file can be used as input to an assembler. Text
from the source file is merged into the assembly file. This improves readability. VVariable names are used
throughout. A hex format directive is put into the assembly file. This can be switched off if needed. Local
variables may have the same name. The compiler will add an extension to ensure that all variable names
are unique.

The compiler will use __config and __idlocs in the generated assembly file when #pragma config is used
in the source. The old assembly format is still available by using the command line option -cfc.

Command line option -Ma will truncate all automatic generated labels in the assembly and list files. This
option is sometimes useful when comparing assembly files generated by different compiler versions.

There are many command line options which change the assembly file produced. Please note the
difference between the -a and the -A options. The -a option is needed to produce an assembly file, while
the -A option changes the contents of the assembly and list files.

The general format is -A[scHDftumiJN+N+N].
s: symbolic arguments are replaced by numbers
¢: no C source code is printed
H: hexadecimal numbers only

101

CCB8E C Compiler B Knudsen Data

D: decimal numbers only

f: no object format directive is printed

t: no tabulators, normal spaces only

u: no extra info at the end of the assembly file

m: single source line only

i: no source indentation, straight left margin

J: put source after instructions to achieve a compact assembly file.
R: detailed macro expansion

N+N+N: label, mnemonic and argument spacing. Default is 8+6+10.

Note that the options are CASE sensitive.

Some examples:

Defaul t : ; X++;
n001 I NCF x

-AsDJ : mD01 INCF 10 ; X++;

-Ac mD01 I NCF X

-AJ6+8+11 : nDO01 | NCF X ; X++;

-Ai J1+6+10 : nDO1

I NCF X DX+

- Al Js1+6+6 : nDO1

| NCF 0Ah DX+t

8.3 Variable File

The variable list file contains information on the variables declared. Variables are sorted by address by
default, but this can be changed. The compiler needs the command line option -V to produce this file. The
file name is <src>.var.

The general format is -V[rnuDGg]. The additional letters allows the file contents to be adjusted:

r: only variables which are referenced in the code
n: sort variables by name

u: keep the variables unsorted

D: use decimal numbers

G: list default config settings and alternatives

g: list config setting alternatives

Variable file contents:
X B Addres Size #AC Nanme

X-> L : local variable
G : global variable
P assigned to certain address
E extern vari abl e
R over | apping, directly assigned
C const vari abl e
B-> - . access RAM
0O : bank O
1 : bank 1
etc.
Addr ess -> 0x00A . file address

0Ox00C. 0 : bit address (file + bit nunber)

Size -> size in bytes (0 for bit)

102

CCB8E C Compiler B Knudsen Data

#AC -> 12: nunber of direct accesses to the variable

Examples:
X B Address Size #AC Nane
R[-] 0x00B 1 : 10: alfa
P[-] 0x00B 1 12: fixc
L [-] O0x00D 1 : 1. lok
L [0] 0x012.0 0 : 6: bl
G[0] O0x012.1 0 16: bx
G [0] 0x015 1 23: b

When a function is not called (unused), all its parameters and local variables are truncated to the same

location. Example:
L [-] OxOOF 1 : 16<> pm2_

Options -VG and -Vg will list the available device configuration bit symbols (config as found in the
device header file) at the end of the variable list file. Note that option -VG will list the default settings
enabled and not the actual settings for the project. The intension of the list is to provide an easy way to
copy-and-paste the config symbols into a C source file where the actual settings can be decided by simple
editing of the list. Example listing for option -VG:

/] #pragma config PWRT = ON // PWRT enabl ed
#pragma config PWRT = OFF // PWRT di sabl ed

Example listing for option -Vg:

ON // PWRT enabl ed
OFF // PWRT di sabl ed

/| #pragma confi g PWRT
/| #pragma confi g PWRT

8.4 List File

The compiler can also produce a list file. The command line option is -L or -L[<col><lin>]. The
maximum number of columns per line <col> and lines per page <lin> can be altered. The default setting
is -L.200,60. The contents of the list file can be changed by using the -A option.

8.5 Function Call Structure

The function call structure can be written to file <src>.fcs. This is useful for function restructuring in case
of call level problems. Note that two different formats are produced; the first is a list of functions, the
second is a recursive expansion of the function call structure. The command line option is -Q for both
formats.

Format sample:

F: functionl C#1
func2 . #5
del ay DO#2
func3 T #3

The meaning of the symbols is:

1. func2, delay and func3 are called from functionl
2. #1:functionl is called once

3. #3:func3is called 3 times (once from functionl)

The call structure is expanded recursively. The indentation show the nesting of the function calls in the

source. The true call level is printed at the beginning of the line. The true call level is different from the
indentation level when CALL's have been replaced by GOTO's. A mark is then printed at the end of the

103

CCB8E C Compiler B Knudsen Data

line in such cases. The interrupt call level is handled automatically and checked. There is a separate
expansion for the interrupt service routine.

LO main

L1 functionl
L2 func2
L2 del ay
L2 func3

L1 functionl ..

Explanation of symbols used:

e L1:stacklevel 1 (max 31 levels). This is the REAL stack level, compensated when CALL's have
been replaced by GOTO.

e .. only the first call is fully expanded if more that one call to the same function occur inside the
same function body.

* [CALL->GOTO] : CALL replaced by GOTO in order to get more call levels

 [T-GOTO]: CALL+RETURN is replaced by GOTO to save a call level.

» [RECURSIVE] : recursive function call

8.6 Preprocessor Output File

The compiler will write the output from the preprocessor to a file (<src>.cpr) when using the -B
command line option. Preprocessor directives are either removed or simplified. Macro identifiers are
replaced by the macro contents. This file can be useful to check out macro expansion, for example when
the compiler produce an error message when nested macros are used.

The option format is -B[pims] where the additional letters allow some alternatives:
p : partial preprocessing
i :no include files
m: modify symbols
s : modify strings

Compilation will stop after preprocessing when using any of the additional letters.

104

CCB8E C Compiler B Knudsen Data

9 APPLICATION NOTES

9.1 Computed Goto

Computed goto is a compact and elegant way of implementing a multi-selection. It can also be used for
storing a table of constants. However, the ‘const’ type modifier is normally the best way to store constant
data in program memory.

WARNING: Designing computed goto's of types not described in this section may fail. The generated
assembly file will then have to be studied carefully because optimization and updating of the bank
selection bits can be wrong.

Note that PCLATU and PCLATH in most cases have to be updated before writing to PCL. The compiler
can do ALL updating and checking automatically.

Built in skip(), skipL(), skipM(), skipX() functions for computed goto

The different skip functions allows both single and double word instructions to be used in the table.

skip(i): all instructions in the table must be single word, using single word increments.
skipL(i): all instructions in the table must be double words, using double word increments.
skipM(i): both double and single word instructions in the table, using single word increments.
skipX(i): triple, double and single word instructions in the table, using single word increments.

oD

Note that the compiler will check the table contents when using skip(), skipL() and skipM(), and generate
en error message if the single/double word conditions are not met. Also note that ‘goto LABEL,;’
statements inside the table will not be changed to a branch if skipL() is used. This makes it easy to change
a skip() table to a skipL() table if a branch is out of reach.

The skip functions use 8 bit parameters only. Note however that the range of skipL() is 128 double word
instructions. Carry is automatically generated if the table cross a 256 byte address boundary. Options
available:

-GD : dynamic selected skip format (default)

-GW : dynamic selected skip format, warning on long format

-GS : always short skip format (error if boundary is crossed)

-GL : always long skip format

When using the -GS option, CC8E will generate an error if the table cross a 256 byte address boundary.
The short format enables most compact code, but requires manually moving the table in the source code
if the error is produced.

Origin alignment

It is possible to use #pragma origin to ensure that a computed goto inside a function does not cross a 256
byte address boundary. However, this may require many changes during program development. An
alternative is to use #pragma alignLsbOrigin to automatically align the least significant byte of the origin
address. Note that this alignment is not possible when using relocatable assembly. Relocatable assembly
requires another approach to fix the address. This is found in Section Using code sections on page 85 in
Chapter 6.7 Linker Support.

Example: A function contains a computed goto. After inspecting the generated list file, there are 15
instructions words between the function start and the address latch update instruction (MOVF PCL,W,0
updates PCLATH and PCLATU). The last computed goto destination address (offset 10) resides further 2
+ 10 instructions words below the address latch update instruction. A fast a compact computed goto
requires that these addresses resides on the same “byte page” (i.e. (address & OxFFFFO0O) are identical for
the two addresses). This is achieved with the statement:

105

CCB8E C Compiler B Knudsen Data

#pragma alignLsbOrigin -(15+1)*2 to 254 — (2+10)*2 — (15+1)*2

The alignment pragma statement is not critical. The compiler will generate an error (option -GS) or a
warning (-GW) if the computed goto cross a boundary because of a wrong alignment. An easier approach
is to align the LSB to a certain value (as long as program size is not critical).

#pragma alignLsbOrigin O /] align on LSB = 0
#pragma alignLsbOrigin 0 to 190 [l [-254 .. 254]
#pragma al i gnLsbOrigin -100 to 10

16 bit computed goto

The skip inline function can use a 16 bit argument. This requires normally 11 instructions (14 instructions
when a 64k byte boundary is crossed). When using relocatable assembly 14 instructions are used on
devices with more than 64k byte memory.

unsl6é sl16;

ski p(sl16);

/1 skip to any instruction in a 65536 instruction word table
/] offset 0 is the first instruction in the table

/] offset 1 is the next instruction word in the table

/* skipMs16) must be used when the table contains double
word instructions. The second word of a double word
instruction executes a NOP if junped to. */

/* The follow ng pragna is recomended if the function does
not end i medi ate after the table */

#pragm conput edGoto O

/* Optional C statements after the table */

} /'* end of function */

Computed goto regions

The compiler enters a goto region when skip, skipL or skipM is detected. In this region optimization is
slightly changed, and some address checks are made. The goto region normally ends where the function
ends.

A goto region can also be started by a pragma statement:

#pragm conmput edGoto 1 /1 start c-goto region
/1 useful if PCL is witten directly

A goto region can also be stopped by a pragma statement:

#pragma conputedGoto 0 // end of c-goto region

/* recomended if the function contains code
bel ow the goto region, for instance when the
tabl e consists of an array of goto
statements (exanples follow later). */

Computed Goto Regions affects:
1. Optimization

2. Register bank bit updating
3. 256 byte boundary checks

106

CCB8E C Compiler

B Knudsen Data

Examples

char subO(char i)

{

}

skip(i); // jumps 'i' code words forward
#pragma return[] "Hel |l o worl d"
#pragma return[] 10 "nmore text" 0 1 2 3 OxFF

/* This is a safe and position-i ndependent nethod

of coding return arrays or |ookup constant
tables. It works for all PICricro devices. The
conpi l er handles all checking and code
generation issues. It is possible to use return
arrays |ike above or any C statenents. */

return 110;
return Ox2F;

voi d sub3(char s)

}

/* the next statenments could also be witten as
a switch statenent, but this solution is
fastest and nost conpact. */

if (s >= 3)
goto Default;
skip(s);

goto CaseO
goto Casel;
goto Last Case;

#pragm conputedGoto O // end of c-goto region

CaseO:

/* user statenents */
return;

Casel:

Last Case:
/* user statenents */
return;

Def aul t:
/* user statenents */
return;

voi d sub4(char s)

{

/* this solution can be used if very fast
execution is inportant and a fixed nunber of
instructions (2/4/8/..) is executed at each
sel ection. Please note that extra statenents
have to be inserted to fill up enpty space
bet ween each case. */

107

CCB8E C Compiler B Knudsen Data

if (s >= 10)

got o END;
s =rlnc(s); /* multiply by 2 */
s =rlnc(s); /* multiply by 2 */
skip(s);

/1 execute 4 instructions at each selection
Case0: nop(); nop(); nop(); return;
Casel: nop(); nop(); nop(); return;
Case2: nop(); nop(); nop(); return;
Case3: nop(); nop(); nop(); return;
Case4: nop(); nop(); nop(); return;
Case5: nop(); nop(); nop(); goto END;
Case6: nop(); nop(); nop(); goto END;
Case7: nop(); nop(); nop(); goto END
Case8: nop(); nop(); nop(); goto END
Case9: nop(); nop(); nop(); goto END
#pragm conputedGoto O /* end of region */
END:
; I/ More statenments

}

9.2 The switch statement

char select(char W

{
switch(W {
case 1: /* XORLW1 */
[* .. */
br eak;
case 2: [* XORLW 3 */
br eak;
case 3: /* XORLW1 */
case 4: [* XORLW 7 */
return 4,
case b: [* XORLW 1 */
return 5;
}
return O; /* default */
}

The compiler performs a sequence of XORLW <const>. These constants are NOT the same as the
constants written in the C code. However, the produced code is correct! If more compact code is required,
then consider rewriting the switch statement as a computed goto. This is very efficient if the cases are
close to each other (i.e. 2, 3, 4,5, ..).

108

CC8E - APPENDIX

B Knudsen Data

APPENDIX

Al Predefined Register Names

All register names, including the predefined ones, are found in the header files. The predefined register

names are:

char TOSU, TOSH, TOSL;
char STKPTR;

char *TBLPTR;

char PCLATU, PCLATH, PCL;
char PRODH, PRODL;

char W WREG

char BSR, BSRL;

si ze2 char *FSRO, *FSR1, *FSR2;

/Il 24 bit address
char TBLPTRU, TBLPTRH, TBLPTRL, TABLAT;

char | NDFO, POSTI NCO, POSTDECO,
char | NDF1, POSTI NC1, POSTDEC1,
char | NDF2, POSTI NC2, POSTDEC2,

PREI NCO, PLUSW), FSROH, FSROL;
PREI NC1, PLUSWL, FSR1H, FSRI1L,;
PREI NC2, PLUSW2, FSR2H, FSR2L;

char STATUS;

bit Carry, DC, Zero_, Overflow, Negative;

Original PIC18 only:

char | NTCON, | NTCON2, | NTCONS;

A2 Assembly Instructions

Assenbl y: St at us: Qper ati on:

ADDLW k CDC Z NO/V W=k + W Add literal and W
ADDW f,d,a CDC Z NO/ d=1f + W Add Wand f
ADDWC f,d,a CDC Z NO/ d=f + W+ C Add with Carry
ANDLW k Z,N W= W& k; AND literal and W
ANDW f,d, a Z,N d=f &W AND W and f

BC I - Branch if Carry

BN I - Branch if Negative

BNC I - Branch if No Carry

BNN I - Branch if Not Negative

BNOV | - Branch if Not Overflow

BNz I - Branch if Not Zero

BOV I - Branch if Overfl ow

BRA I - Branch al ways

Bz I - Branch if Zero

BCF f,b,a - f.b = 0; Bit clear f

BSF f,b,a - f.b = 1; Bit set f

BTG f,b,a - f.b =1f.b; Bit toggle

BTFSC f,b,a - Bit test f, skip if clear
BTFSS f,b,a - Bit test f, skip if set

CALL k - Cal | subroutine

CLRF f,a Z f =0; Clear f

CLRWDT - TO, PD WDT = 0; Cear watchdog tiner

109

CC8E - APPENDIX B Knudsen Data

COw f,d,a Z, N d =f ~ 255; Conpl ermrent f
CPFSEQ f, a - Skip if f=w

CPFSGT f, a - Skip if f>W

CPFSLT f, a - Skip if f<w

DAW C Deci mal adj ust W

DCFSNz f, d, a - Decrenent f, skip if not zero
DECFSZ f,d, a - Decrenent f, skip if zero

DECF f,d,a C,DCZ NO/V d=f - 1; Decrement f

Goro k - Go to address

INCF f,d,a CDCZNO/ d=f + 1; I ncrement f

INCFSZ f,d, a - Increnent f, skip if zero

I NFSNZ f, d, a - Increnment f, skip if not zero

| ORLW k Z, N W= W| k; Inclusive ORIliteral
IORW f,d,a Z, N d=f | W Inclusive OR Wand f
LFSR f,k - FSRx = 12 bits literal

MOVF f,d, a Z, N d =f; Move f

MOVFF f, f - Move f to f

MOVLB k - BSR = k

MOVLW Kk - W= k; Move literal to W
MOWF f,a - f =W Move Wto f

MULLW Kk - PRODH, PRODL = W* k; Miltiply
MIULW f,a - PRODH, PRODL = W* f; Miltiply
NEG- f,a C DC zZ NoOv f =~f+1l; Negate

NOP - - No operation

POP - Pop val ue from stack

PUSH - Push PC on stack

RESET * Reset device

RETLW k - Return, put literal in W
RETURN - - Return from subrouti ne

RETFI E - - Return from i nterrupt

RLCF f,d,a C Z N Rotate left f through carry bit
RLNCF f,d, a Z, N Rotate left f

RRCF f,d,a C Z N Rotate right f through carry bit
RRNCF f,d, a Z, N Rotate right f

RCALL | - Rel ative call

SETF f,a - f = OxFF;, Set f

SLEEP - TO, PD Go into standby node, WOT = 0
SUBLW k C,DC Z NOV W=k - W Subtract Wfromliteral
SUBW f,d,a CDCZNO/ d=fFf - W Subtract Wfromf
SUBFWB f, d, a CDCZNO/ d=W-f - ~C Subtract with borrow
SUBWFB f, d, a CDCZNO/ d=f —W- ~C Subtract with borrow
SWAPF f,d, a - Swap hal ves f

TBLRD * - TABLAT = *TBLPTR;

TBLRD *+ - TABLAT = *TBLPTR++;

TBLRD *- - TABLAT = *TBLPTR- -;

TBLRD +* - TABLAT = *++TBLPTR,

TBLWI * - *TBLPTR = TABLAT;

TBLWE *+ - * TBLPTR++ = TABLAT;

TBLWI *- - *TBLPTR++ = TABLAT;

TBLWE +* - *++TBLPTR = TABLAT,;

TSTFSZ f, a - Skip if f=0

XORLW k Z, N W= WA k; Exclusive OR literal
XORW f,d, a Z, N d=f W Exclusive OR Wand f

110

CC8E - APPENDIX B Knudsen Data

Additional for the Enhanced PIC18 core

MOVFFL f, f - Move f to f
ADDFSR n, k - Add Literal to FSRn
SUBFSR n, k - Subtract Literal from FSRn
Notes:
d =1 destination f
d=20 destination W
a=1 using BSR to sel ect bank (0 — 15)
a=20 usi ng access bank (0x0 — Ox7F, OxF80 - OxFFF)
f file register
Z Zero bit : Z=1if result is O
C Carry bit
c=1 i ndi cates carry on addition
C=0 : indicates borrow on subtraction
DC Digit Carry bit
DC =1 : indicates carry on addition
DC =0 : indicates borrow on subtraction
TO Ti meout bit
PD Power down bit

Instruction execution time

Most instructions execute in 1 instruction cycle (4 clock cycles), except:
e branch instructions when PC is modified (BC, BRA, RCALL)

e skip instructions when next instruction is skipped

e double word instructions (MOVFF, LFSR, GOTO, CALL)

e instructions that modify the program counter, i.e: ADDWF PCL

111

	1 INTRODUCTION
	1.1 Supported devices
	1.2 Installation and System Requirements
	Support for long file names
	User interface

	1.3 MPLAB Support
	1.4 The SETCC Utility
	1.5 Summary of Delivered Files
	1.6 Short Program Example
	1.7 Defining the PICmicro Device
	1.8 What to do next

	2 VARIABLES
	2.1 RAM allocation
	2.2 Defining Variables
	Integer variables
	Floating point
	IEEE754 interoperability
	Fixed point variables
	Assigning variables to RAM addresses
	Supported type modifiers
	Local variables
	Temporary variables
	Arrays, structures and unions
	Bitfields
	Typedef

	2.3 Using RAM Banks
	The bank type modifier
	RAM bank selection
	Manual bank bit update regions

	2.4 Pointers
	Pointer models

	2.5 Const Data Support
	Data of size 16 bits or more
	Locating Const Data
	Merging data
	Examples
	Interrupt Vector Tables
	Const data stored in dedicated functions

	3 SYNTAX
	3.1 Statements
	if statement
	while statement
	for statement
	do statement
	switch statement
	break statement
	continue statement
	return statement
	goto statement

	3.2 Assignment and Conditions
	Special syntax examples
	Conditions
	Bit variables
	Multiplication, division and modulo
	Precedence of C operators
	Mixed variable sizes are allowed

	3.3 Constants
	Constant expressions
	Enumeration

	3.4 Functions
	Function return values
	Parameters in function calls
	Internal functions

	3.5 Type Cast
	3.6 Accessing Parts of a Variable
	3.7 C Extensions
	3.8 Predefined Symbols
	Extensions to the standard C keywords
	Standard C keywords used
	The sizeof operator
	Function offsetof(struct_type, struct_member)
	Automatically defined macros and symbols
	Macros __FILE__ and __LINE__
	Macros __DATE__ and __TIME__

	3.9 Upward Compatibility

	4 PREPROCESSOR DIRECTIVES
	
	#define
	Macro concatenation
	Macro stringification
	#include
	#undef
	#if
	#ifdef
	#ifndef
	#elif
	#else
	#endif
	#error
	#warning
	#message
	#pragma accessGPR <n>
	#pragma alignLsbOrigin <a> [to]
	#pragma asm2var 1
	#pragma assert [/] <type> <text field>
	#pragma assume *<pointer> in rambank <n>
	#pragma bankOrigin <N>
	#pragma bit <name> @ <N.B or variable[.B]>
	#pragma cdata[ADDRESS] = <VXS>, .., <VXS>
	#pragma char <name> @ <constant or variable>
	#pragma chip [=] <device>
	#pragma computedGoto [=] <0,1>
	#pragma config <setting or symbol definition>
	#pragma inlineMath <0,1>
	#pragma insertConst
	#pragma interruptSaveCheck <n,w,e>
	#pragma intSRC_=<ID>,<vector_nr>[,<comment>]
	#pragma library <0/1>
	#pragma mainStack <minVarSize> @ <lowestStartAddr>
	#pragma minorStack <maxVarSize> @ <lowestStartAddr>
	#pragma optimize [=] [N:] <0,1>
	#pragma origin [=] <expression>
	#pragma rambank [=] <-,0,1,2,..,15>
	#pragma rambase [=] <n>
	#pragma resetVector <n>
	#pragma return[<n>] = <strings or constants>
	#pragma sectionDef <name> [:<id> <start> <end> [PROTECTED]]
	#pragma sharedAllocation
	#pragma stackLevels <n>
	#pragma unlockISR
	#pragma updateBank [entry | exit | default] [=] <0,1>
	#pragma versionFile [<file>]

	4.2 PICmicro Configuration

	5 COMMAND LINE OPTIONS
	5.1 Options in a file
	5.2 Automatic incrementing version number in a file
	5.3 Environment Variables

	6 PROGRAM CODE
	6.1 Subroutine Call Level Checking
	Stack level checking when using interrupt
	Recursive functions

	6.2 Interrupts
	6.3 Startup and Termination Code
	Clearing ALL RAM locations

	6.4 Library Support
	Math libraries
	Integer libraries
	Fixed point libraries
	Floating point libraries
	Floating point library functions
	Fast and compact inline operations
	Fixed point example
	Floating point example
	How to save code

	6.5 Inline Assembly
	Direct coded instructions
	Generating single instructions using C statements

	6.6 Optimizing the Code
	Optimized Syntax
	Peephole optimization

	6.7 Linker Support
	Using MPLINK or a single module
	Restrictions on the demo edition
	Variables and pointers
	Local variables
	Header files
	Using RAM banks
	Bank bit updating
	Functions
	Using code sections
	Interrupts on the enhanced PIC18 core devices
	Interrupts on the original PIC18 core devices
	Call level checking
	Computed goto
	Recommendations when using MPLINK
	MPASM
	The MPLINK script file
	Example with 2 modules

	6.8 The cdata Statement
	Using the cdata statement
	Storing EEPROM data

	7 DEBUGGING
	7.1 Compilation Errors
	Error and warning details
	Some common compilation problems

	7.2 MPLAB Debugging Support
	ICD2 debugging

	7.3 Assert Statements
	7.4 Debugging in Another Environment

	8 FILES PRODUCED
	8.1 Hex File
	8.2 Assembly Output File
	8.3 Variable File
	8.4 List File
	8.5 Function Call Structure
	8.6 Preprocessor Output File

	9 APPLICATION NOTES
	9.1 Computed Goto
	Built in skip(), skipL(), skipM(), skipX() functions for computed goto
	Origin alignment
	16 bit computed goto
	Computed goto regions
	Examples

	9.2 The switch statement

	APPENDIX
	A1 Predefined Register Names
	A2 Assembly Instructions
	Additional for the Enhanced PIC18 core
	Instruction execution time

